- -

Logic Functions with Stimuli-Responsive Single Nanopores

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Logic Functions with Stimuli-Responsive Single Nanopores

Show full item record

Ramirez Hoyos, P.; Cervera Montesinos, J.; Ali, M.; Ensinger, W.; Mafé, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem. 1(4):698-705. https://doi.org/10.1002/celc.201300255

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140196

Files in this item

Item Metadata

Title: Logic Functions with Stimuli-Responsive Single Nanopores
Author: Ramirez Hoyos, Patricio Cervera Montesinos, Javier Ali, Mubarak Ensinger, Wolfgang Mafé, Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] We present the concept of logic functions based on a single stimuli-responsive nanopore and analyze its potential for electrochemical transducers and actuators. The responsive molecules at the surface of the polymeric ...[+]
Subjects: Electrochemical nanoprocessors , Logic functions , Sensors , Signal transduction , Surface chemistry
Copyrigths: Reserva de todos los derechos
Source:
ChemElectroChem. (eissn: 2196-0216 )
DOI: 10.1002/celc.201300255
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/celc.201300255
Project ID:
MINECO-FEDER/MAT2012-32084
GV/Prometeo/0069
Description: "This is the peer reviewed version of the following article: Logic Functions with Stimuli-Responsive Single Nanopores, which has been published in final form at https://doi.org/10.1002/celc.201300255. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
P. R., J. C., and S. M. acknowledge financial support from the Generalitat Valenciana (Project Prometeo/GV/0069), the Ministry of Economy and Competitiveness of Spain (Materials Program, project No. MAT2012-32084), and ...[+]
Type: Artículo

References

Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3

Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196

Ku, J.-R., Lai, S.-M., Ileri, N., Ramírez, P., Mafé, S., & Stroeve, P. (2007). pH and Ionic Strength Effects on Amino Acid Transport through Au-Nanotubule Membranes Charged with Self-Assembled Monolayers. The Journal of Physical Chemistry C, 111(7), 2965-2973. doi:10.1021/jp066944d [+]
Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3

Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196

Ku, J.-R., Lai, S.-M., Ileri, N., Ramírez, P., Mafé, S., & Stroeve, P. (2007). pH and Ionic Strength Effects on Amino Acid Transport through Au-Nanotubule Membranes Charged with Self-Assembled Monolayers. The Journal of Physical Chemistry C, 111(7), 2965-2973. doi:10.1021/jp066944d

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875

Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258

Murray, R. W. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chemical Reviews, 108(7), 2688-2720. doi:10.1021/cr068077e

Hlushkou, D., Perry, J. M., Jacobson, S. C., & Tallarek, U. (2011). Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel–Nanofunnel Device. Analytical Chemistry, 84(1), 267-274. doi:10.1021/ac202501v

Ellis, J. S., Herzog, G., & Galvin, P. (2011). Towards biomolecule-based information processing using engineered nanopores. Nano Communication Networks, 2(1), 62-73. doi:10.1016/j.nancom.2011.04.001

Lebedev, K., Mafé, S., & Stroeve, P. (2005). Modeling Electrochemical Deposition inside Nanotubes to Obtain Metal−Semiconductor Multiscale Nanocables or Conical Nanopores. The Journal of Physical Chemistry B, 109(30), 14523-14528. doi:10.1021/jp051133f

Zhang, Y., Zhang, B., & White, H. S. (2006). Electrochemistry of Nanopore Electrodes in Low Ionic Strength Solutions. The Journal of Physical Chemistry B, 110(4), 1768-1774. doi:10.1021/jp054704c

Umehara, S., Karhanek, M., Davis, R. W., & Pourmand, N. (2009). Label-free biosensing with functionalized nanopipette probes. Proceedings of the National Academy of Sciences, 106(12), 4611-4616. doi:10.1073/pnas.0900306106

Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode:  Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w

Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r

Ali, M., Schiedt, B., Healy, K., Neumann, R., & Ensinger, W. (2008). Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology, 19(8), 085713. doi:10.1088/0957-4484/19/8/085713

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Harrell, C. C., Kohli, P., Siwy, Z., & Martin, C. R. (2004). DNA−Nanotube Artificial Ion Channels. Journal of the American Chemical Society, 126(48), 15646-15647. doi:10.1021/ja044948v

Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555

Tahir, M. N., Ali, M., Andre, R., Müller, W. E. G., Schröder, H.-C., Tremel, W., & Ensinger, W. (2013). Silicatein conjugation inside nanoconfined geometries through immobilized NTA–Ni(ii) chelates. Chemical Communications, 49(22), 2210. doi:10.1039/c3cc38605h

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Fan, R., Yue, M., Karnik, R., Majumdar, A., & Yang, P. (2005). Polarity Switching and Transient Responses in Single Nanotube Nanofluidic Transistors. Physical Review Letters, 95(8). doi:10.1103/physrevlett.95.086607

Karnik, R., Duan, C., Castelino, K., Daiguji, H., & Majumdar, A. (2007). Rectification of Ionic Current in a Nanofluidic Diode. Nano Letters, 7(3), 547-551. doi:10.1021/nl062806o

Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f

Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029

Ali, M., Tahir, M. N., Siwy, Z., Neumann, R., Tremel, W., & Ensinger, W. (2011). Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 83(5), 1673-1680. doi:10.1021/ac102795a

Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar Energy Storage Methods. Industrial & Engineering Chemistry Research, 50(15), 8954-8964. doi:10.1021/ie2003413

Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121

Han, J.-H., Kim, K. B., Kim, H. C., & Chung, T. D. (2009). Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie International Edition, 48(21), 3830-3833. doi:10.1002/anie.200900045

Han, J.-H., Kim, K. B., Kim, H. C., & Chung, T. D. (2009). Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie, 121(21), 3888-3891. doi:10.1002/ange.200900045

Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A., & Berggren, M. (2010). Ion bipolar junction transistors. Proceedings of the National Academy of Sciences, 107(22), 9929-9932. doi:10.1073/pnas.0913911107

Ali, M., Ramirez, P., Tahir, M. N., Mafe, S., Siwy, Z., Neumann, R., … Ensinger, W. (2011). Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 3(4), 1894. doi:10.1039/c1nr00003a

Senapati, S., Basuray, S., Slouka, Z., Cheng, L.-J., & Chang, H.-C. (2011). A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics. Topics in Current Chemistry, 153-169. doi:10.1007/128_2011_142

Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302

Kalman, E. B., Vlassiouk, I., & Siwy, Z. S. (2008). Nanofluidic Bipolar Transistors. Advanced Materials, 20(2), 293-297. doi:10.1002/adma.200701867

Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P., & Sartowska, B. A. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology, 22(17), 175302. doi:10.1088/0957-4484/22/17/175302

Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608

Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p

Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2012). Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 6(10), 9247-9257. doi:10.1021/nn303669g

Hou, X., Guo, W., Xia, F., Nie, F.-Q., Dong, H., Tian, Y., … Jiang, L. (2009). A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 131(22), 7800-7805. doi:10.1021/ja901574c

Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y

Mafe, S., Manzanares, J. A., & Ramirez, P. (2010). Gating of Nanopores: Modeling and Implementation of Logic Gates. The Journal of Physical Chemistry C, 114(49), 21287-21290. doi:10.1021/jp1087114

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3

Nasir, S., Ali, M., & Ensinger, W. (2012). Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology, 23(22), 225502. doi:10.1088/0957-4484/23/22/225502

Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2009). Ionic Transport Through Single Solid-State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates. Small, 5(11), 1287-1291. doi:10.1002/smll.200801318

Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2009). Synthetic Proton-Gated Ion Channels via Single Solid-State Nanochannels Modified with Responsive Polymer Brushes. Nano Letters, 9(7), 2788-2793. doi:10.1021/nl901403u

Hou, X., Yang, F., Li, L., Song, Y., Jiang, L., & Zhu, D. (2010). A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 132(33), 11736-11742. doi:10.1021/ja1045082

Guo, W., Xia, H., Cao, L., Xia, F., Wang, S., Zhang, G., … Zhu, D. (2010). Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes. Advanced Functional Materials, 20(20), 3561-3567. doi:10.1002/adfm.201000989

Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146

Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Kontturi, K., Murtomäki, L., & Manzanares, J. A. (2008). Ionic Transport Processes. doi:10.1093/acprof:oso/9780199533817.001.0001

Cervera, J., Ramírez, P., Manzanares, J. A., & Mafé, S. (2009). Incorporating ionic size in the transport equations for charged nanopores. Microfluidics and Nanofluidics, 9(1), 41-53. doi:10.1007/s10404-009-0518-2

Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Cooperative Effects Enhance Electric-Field-Induced Conductance Switching in Molecular Monolayers. The Journal of Physical Chemistry C, 115(14), 6980-6985. doi:10.1021/jp202228n

Cervera, J., & Mafé, S. (2010). Multivalued and Reversible Logic Gates Implemented with Metallic Nanoparticles and Organic Ligands. ChemPhysChem, 11(8), 1654-1658. doi:10.1002/cphc.200900973

Pita, M., Krämer, M., Zhou, J., Poghossian, A., Schöning, M. J., Fernández, V. M., & Katz, E. (2008). Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems. ACS Nano, 2(10), 2160-2166. doi:10.1021/nn8004558

Pu, F., Ren, J., Yang, X., & Qu, X. (2011). Multivalued Logic Gates Based on DNA. Chemistry - A European Journal, 17(35), 9590-9594. doi:10.1002/chem.201101140

Zhang, L.-X., Cai, S.-L., Zheng, Y.-B., Cao, X.-H., & Li, Y.-Q. (2011). Smart Homopolymer Modification to Single Glass Conical Nanopore Channels: Dual-Stimuli-Actuated Highly Efficient Ion Gating. Advanced Functional Materials, 21(11), 2103-2107. doi:10.1002/adfm.201002627

Aguilella-Arzo, M., Cervera, J., Ramírez, P., & Mafé, S. (2006). Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration. Physical Review E, 73(4). doi:10.1103/physreve.73.041914

Jimbo, T., Ramírez, P., Tanioka, A., Mafé, S., & Minoura, N. (2000). Passive Transport of Ionic Drugs through Membranes with pH-Dependent Fixed Charges. Journal of Colloid and Interface Science, 225(2), 447-454. doi:10.1006/jcis.2000.6779

Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839

Cheng, L.-J., & Guo, L. J. (2009). Ionic Current Rectification, Breakdown, and Switching in Heterogeneous Oxide Nanofluidic Devices. ACS Nano, 3(3), 575-584. doi:10.1021/nn8007542

Ramírez, P., Rapp, H.-J., Mafé, S., & Bauer, B. (1994). Bipolar membranes under forward and reverse bias conditions. Theory vs. experiment. Journal of Electroanalytical Chemistry, 375(1-2), 101-108. doi:10.1016/0022-0728(94)03379-x

Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j

Gao, X. P. A., Zheng, G., & Lieber, C. M. (2010). Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors. Nano Letters, 10(2), 547-552. doi:10.1021/nl9034219

Guan, W., Fan, R., & Reed, M. A. (2011). Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2(1). doi:10.1038/ncomms1514

Jiang, Z., & Stein, D. (2011). Charge regulation in nanopore ionic field-effect transistors. Physical Review E, 83(3). doi:10.1103/physreve.83.031203

Hu, N., Ai, Y., & Qian, S. (2012). Field effect control of electrokinetic transport in micro/nanofluidics. Sensors and Actuators B: Chemical, 161(1), 1150-1167. doi:10.1016/j.snb.2011.12.004

Wang, G., Bohaty, A. K., Zharov, I., & White, H. S. (2006). Photon Gated Transport at the Glass Nanopore Electrode. Journal of the American Chemical Society, 128(41), 13553-13558. doi:10.1021/ja064274j

Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811

Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a

Wen, L., Liu, Q., Ma, J., Tian, Y., Li, C., Bo, Z., & Jiang, L. (2012). Malachite Green Derivative-Functionalized Single Nanochannel: Light-and-pH Dual-Driven Ionic Gating. Advanced Materials, 24(46), 6193-6198. doi:10.1002/adma.201202673

Wen, L., Ma, J., Tian, Y., Zhai, J., & Jiang, L. (2012). A Photo-induced, and Chemical-Driven, Smart-Gating Nanochannel. Small, 8(6), 838-842. doi:10.1002/smll.201101661

Jiang, Y., Liu, N., Guo, W., Xia, F., & Jiang, L. (2012). Highly-Efficient Gating of Solid-State Nanochannels by DNA Supersandwich Structure Containing ATP Aptamers: A Nanofluidic IMPLICATION Logic Device. Journal of the American Chemical Society, 134(37), 15395-15401. doi:10.1021/ja3053333

Andréasson, J., Pischel, U., Straight, S. D., Moore, T. A., Moore, A. L., & Gust, D. (2011). All-Photonic Multifunctional Molecular Logic Device. Journal of the American Chemical Society, 133(30), 11641-11648. doi:10.1021/ja203456h

Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

Tybrandt, K., Forchheimer, R., & Berggren, M. (2012). Logic gates based on ion transistors. Nature Communications, 3(1). doi:10.1038/ncomms1869

Tybrandt, K., Gabrielsson, E. O., & Berggren, M. (2011). Toward Complementary Ionic Circuits: ThenpnIon Bipolar Junction Transistor. Journal of the American Chemical Society, 133(26), 10141-10145. doi:10.1021/ja200492c

Ayub, M., Ivanov, A., Instuli, E., Cecchini, M., Chansin, G., McGilvery, C., … Albrecht, T. (2010). Nanopore/electrode structures for single-molecule biosensing. Electrochimica Acta, 55(27), 8237-8243. doi:10.1016/j.electacta.2010.03.051

He, Y., Gillespie, D., Boda, D., Vlassiouk, I., Eisenberg, R. S., & Siwy, Z. S. (2009). Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion. Journal of the American Chemical Society, 131(14), 5194-5202. doi:10.1021/ja808717u

Majd, S., Yusko, E. C., Billeh, Y. N., Macrae, M. X., Yang, J., & Mayer, M. (2010). Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Current Opinion in Biotechnology, 21(4), 439-476. doi:10.1016/j.copbio.2010.05.002

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Wu, S., Wildhaber, F., Bertsch, A., Brugger, J., & Renaud, P. (2013). Field effect modulated nanofluidic diode membrane based on Al2O3/W heterogeneous nanopore arrays. Applied Physics Letters, 102(21), 213108. doi:10.1063/1.4807781

Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748

Momotenko, D., & Girault, H. H. (2011). Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. Journal of the American Chemical Society, 133(37), 14496-14499. doi:10.1021/ja2048368

Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026

Duan, X., Fu, T.-M., Liu, J., & Lieber, C. M. (2013). Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today, 8(4), 351-373. doi:10.1016/j.nantod.2013.05.001

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record