- -

Logic Functions with Stimuli-Responsive Single Nanopores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Logic Functions with Stimuli-Responsive Single Nanopores

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Cervera Montesinos, Javier es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.date.accessioned 2020-04-06T08:55:59Z
dc.date.available 2020-04-06T08:55:59Z
dc.date.issued 2014 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140196
dc.description "This is the peer reviewed version of the following article: Logic Functions with Stimuli-Responsive Single Nanopores, which has been published in final form at https://doi.org/10.1002/celc.201300255. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] We present the concept of logic functions based on a single stimuli-responsive nanopore and analyze its potential for electrochemical transducers and actuators. The responsive molecules at the surface of the polymeric nanopore immersed in an electrolyte solution are sensitive to thermal, chemical, electrical, and optical stimuli, which are the input signals required to externally tune the conductance of the nanopore (the logical output). A single nanostructure can be operated as a resistor or as a diode with a broad range of rectifying properties, allowing for logical information-processing schemes that are useful pH and temperature sensors, electro-optical detectors, and electrochemical actuators and transducers. Some of the limitations to be addressed in practical applications are also cited. es_ES
dc.description.sponsorship P. R., J. C., and S. M. acknowledge financial support from the Generalitat Valenciana (Project Prometeo/GV/0069), the Ministry of Economy and Competitiveness of Spain (Materials Program, project No. MAT2012-32084), and FEDER. M. A. and W. E. gratefully acknowledge financial support by the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemElectroChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrochemical nanoprocessors es_ES
dc.subject Logic functions es_ES
dc.subject Sensors es_ES
dc.subject Signal transduction es_ES
dc.subject Surface chemistry es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Logic Functions with Stimuli-Responsive Single Nanopores es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/celc.201300255 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ramirez Hoyos, P.; Cervera Montesinos, J.; Ali, M.; Ensinger, W.; Mafé, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem. 1(4):698-705. https://doi.org/10.1002/celc.201300255 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/celc.201300255 es_ES
dc.description.upvformatpinicio 698 es_ES
dc.description.upvformatpfin 705 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2196-0216 es_ES
dc.relation.pasarela S\293909 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Beilstein-Institut
dc.description.references Siwy, Z., Gu, Y., Spohr, H. A., Baur, D., Wolf-Reber, A., Spohr, R., … Korchev, Y. E. (2002). Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL), 60(3), 349-355. doi:10.1209/epl/i2002-00271-3 es_ES
dc.description.references Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196 es_ES
dc.description.references Ku, J.-R., Lai, S.-M., Ileri, N., Ramírez, P., Mafé, S., & Stroeve, P. (2007). pH and Ionic Strength Effects on Amino Acid Transport through Au-Nanotubule Membranes Charged with Self-Assembled Monolayers. The Journal of Physical Chemistry C, 111(7), 2965-2973. doi:10.1021/jp066944d es_ES
dc.description.references Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 es_ES
dc.description.references Ali, M., Yameen, B., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2008). Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society, 130(48), 16351-16357. doi:10.1021/ja8071258 es_ES
dc.description.references Murray, R. W. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chemical Reviews, 108(7), 2688-2720. doi:10.1021/cr068077e es_ES
dc.description.references Hlushkou, D., Perry, J. M., Jacobson, S. C., & Tallarek, U. (2011). Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel–Nanofunnel Device. Analytical Chemistry, 84(1), 267-274. doi:10.1021/ac202501v es_ES
dc.description.references Ellis, J. S., Herzog, G., & Galvin, P. (2011). Towards biomolecule-based information processing using engineered nanopores. Nano Communication Networks, 2(1), 62-73. doi:10.1016/j.nancom.2011.04.001 es_ES
dc.description.references Lebedev, K., Mafé, S., & Stroeve, P. (2005). Modeling Electrochemical Deposition inside Nanotubes to Obtain Metal−Semiconductor Multiscale Nanocables or Conical Nanopores. The Journal of Physical Chemistry B, 109(30), 14523-14528. doi:10.1021/jp051133f es_ES
dc.description.references Zhang, Y., Zhang, B., & White, H. S. (2006). Electrochemistry of Nanopore Electrodes in Low Ionic Strength Solutions. The Journal of Physical Chemistry B, 110(4), 1768-1774. doi:10.1021/jp054704c es_ES
dc.description.references Umehara, S., Karhanek, M., Davis, R. W., & Pourmand, N. (2009). Label-free biosensing with functionalized nanopipette probes. Proceedings of the National Academy of Sciences, 106(12), 4611-4616. doi:10.1073/pnas.0900306106 es_ES
dc.description.references Alcaraz, A., Ramírez, P., García-Giménez, E., López, M. L., Andrio, A., & Aguilella, V. M. (2006). A pH-Tunable Nanofluidic Diode:  Electrochemical Rectification in a Reconstituted Single Ion Channel. The Journal of Physical Chemistry B, 110(42), 21205-21209. doi:10.1021/jp063204w es_ES
dc.description.references Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r es_ES
dc.description.references Ali, M., Schiedt, B., Healy, K., Neumann, R., & Ensinger, W. (2008). Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology, 19(8), 085713. doi:10.1088/0957-4484/19/8/085713 es_ES
dc.description.references Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f es_ES
dc.description.references Harrell, C. C., Kohli, P., Siwy, Z., & Martin, C. R. (2004). DNA−Nanotube Artificial Ion Channels. Journal of the American Chemical Society, 126(48), 15646-15647. doi:10.1021/ja044948v es_ES
dc.description.references Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707 es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555 es_ES
dc.description.references Tahir, M. N., Ali, M., Andre, R., Müller, W. E. G., Schröder, H.-C., Tremel, W., & Ensinger, W. (2013). Silicatein conjugation inside nanoconfined geometries through immobilized NTA–Ni(ii) chelates. Chemical Communications, 49(22), 2210. doi:10.1039/c3cc38605h es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Fan, R., Yue, M., Karnik, R., Majumdar, A., & Yang, P. (2005). Polarity Switching and Transient Responses in Single Nanotube Nanofluidic Transistors. Physical Review Letters, 95(8). doi:10.1103/physrevlett.95.086607 es_ES
dc.description.references Karnik, R., Duan, C., Castelino, K., Daiguji, H., & Majumdar, A. (2007). Rectification of Ionic Current in a Nanofluidic Diode. Nano Letters, 7(3), 547-551. doi:10.1021/nl062806o es_ES
dc.description.references Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f es_ES
dc.description.references Chun, K.-Y., Mafé, S., Ramírez, P., & Stroeve, P. (2006). Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chemical Physics Letters, 418(4-6), 561-564. doi:10.1016/j.cplett.2005.11.029 es_ES
dc.description.references Ali, M., Tahir, M. N., Siwy, Z., Neumann, R., Tremel, W., & Ensinger, W. (2011). Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 83(5), 1673-1680. doi:10.1021/ac102795a es_ES
dc.description.references Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar Energy Storage Methods. Industrial & Engineering Chemistry Research, 50(15), 8954-8964. doi:10.1021/ie2003413 es_ES
dc.description.references Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121 es_ES
dc.description.references Han, J.-H., Kim, K. B., Kim, H. C., & Chung, T. D. (2009). Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie International Edition, 48(21), 3830-3833. doi:10.1002/anie.200900045 es_ES
dc.description.references Han, J.-H., Kim, K. B., Kim, H. C., & Chung, T. D. (2009). Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie, 121(21), 3888-3891. doi:10.1002/ange.200900045 es_ES
dc.description.references Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A., & Berggren, M. (2010). Ion bipolar junction transistors. Proceedings of the National Academy of Sciences, 107(22), 9929-9932. doi:10.1073/pnas.0913911107 es_ES
dc.description.references Ali, M., Ramirez, P., Tahir, M. N., Mafe, S., Siwy, Z., Neumann, R., … Ensinger, W. (2011). Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 3(4), 1894. doi:10.1039/c1nr00003a es_ES
dc.description.references Senapati, S., Basuray, S., Slouka, Z., Cheng, L.-J., & Chang, H.-C. (2011). A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics. Topics in Current Chemistry, 153-169. doi:10.1007/128_2011_142 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Dmitriev, S. N., Orelovitch, O. L., Presz, A., & Sartowska, B. A. (2007). Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles. Nanotechnology, 18(30), 305302. doi:10.1088/0957-4484/18/30/305302 es_ES
dc.description.references Kalman, E. B., Vlassiouk, I., & Siwy, Z. S. (2008). Nanofluidic Bipolar Transistors. Advanced Materials, 20(2), 293-297. doi:10.1002/adma.200701867 es_ES
dc.description.references Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P., & Sartowska, B. A. (2011). Effect of nanopore geometry on ion current rectification. Nanotechnology, 22(17), 175302. doi:10.1088/0957-4484/22/17/175302 es_ES
dc.description.references Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608 es_ES
dc.description.references Xia, F., Guo, W., Mao, Y., Hou, X., Xue, J., Xia, H., … Jiang, L. (2008). Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 130(26), 8345-8350. doi:10.1021/ja800266p es_ES
dc.description.references Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2012). Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 6(10), 9247-9257. doi:10.1021/nn303669g es_ES
dc.description.references Hou, X., Guo, W., Xia, F., Nie, F.-Q., Dong, H., Tian, Y., … Jiang, L. (2009). A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 131(22), 7800-7805. doi:10.1021/ja901574c es_ES
dc.description.references Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., … Azzaroni, O. (2010). Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 132(24), 8338-8348. doi:10.1021/ja101014y es_ES
dc.description.references Mafe, S., Manzanares, J. A., & Ramirez, P. (2010). Gating of Nanopores: Modeling and Implementation of Logic Gates. The Journal of Physical Chemistry C, 114(49), 21287-21290. doi:10.1021/jp1087114 es_ES
dc.description.references Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b es_ES
dc.description.references Kalman, E. B., Sudre, O., Vlassiouk, I., & Siwy, Z. S. (2008). Control of ionic transport through gated single conical nanopores. Analytical and Bioanalytical Chemistry, 394(2), 413-419. doi:10.1007/s00216-008-2545-3 es_ES
dc.description.references Nasir, S., Ali, M., & Ensinger, W. (2012). Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology, 23(22), 225502. doi:10.1088/0957-4484/23/22/225502 es_ES
dc.description.references Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2009). Ionic Transport Through Single Solid-State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates. Small, 5(11), 1287-1291. doi:10.1002/smll.200801318 es_ES
dc.description.references Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W., & Azzaroni, O. (2009). Synthetic Proton-Gated Ion Channels via Single Solid-State Nanochannels Modified with Responsive Polymer Brushes. Nano Letters, 9(7), 2788-2793. doi:10.1021/nl901403u es_ES
dc.description.references Hou, X., Yang, F., Li, L., Song, Y., Jiang, L., & Zhu, D. (2010). A Biomimetic Asymmetric Responsive Single Nanochannel. Journal of the American Chemical Society, 132(33), 11736-11742. doi:10.1021/ja1045082 es_ES
dc.description.references Guo, W., Xia, H., Cao, L., Xia, F., Wang, S., Zhang, G., … Zhu, D. (2010). Integrating Ionic Gate and Rectifier Within One Solid-State Nanopore via Modification with Dual-Responsive Copolymer Brushes. Advanced Functional Materials, 20(20), 3561-3567. doi:10.1002/adfm.201000989 es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146 es_ES
dc.description.references Cervera, J., Alcaraz, A., Schiedt, B., Neumann, R., & Ramírez, P. (2007). Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. The Journal of Physical Chemistry C, 111(33), 12265-12273. doi:10.1021/jp071884c es_ES
dc.description.references Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797 es_ES
dc.description.references Kontturi, K., Murtomäki, L., & Manzanares, J. A. (2008). Ionic Transport Processes. doi:10.1093/acprof:oso/9780199533817.001.0001 es_ES
dc.description.references Cervera, J., Ramírez, P., Manzanares, J. A., & Mafé, S. (2009). Incorporating ionic size in the transport equations for charged nanopores. Microfluidics and Nanofluidics, 9(1), 41-53. doi:10.1007/s10404-009-0518-2 es_ES
dc.description.references Manzanares, J. A., Cervera, J., & Mafé, S. (2011). Cooperative Effects Enhance Electric-Field-Induced Conductance Switching in Molecular Monolayers. The Journal of Physical Chemistry C, 115(14), 6980-6985. doi:10.1021/jp202228n es_ES
dc.description.references Cervera, J., & Mafé, S. (2010). Multivalued and Reversible Logic Gates Implemented with Metallic Nanoparticles and Organic Ligands. ChemPhysChem, 11(8), 1654-1658. doi:10.1002/cphc.200900973 es_ES
dc.description.references Pita, M., Krämer, M., Zhou, J., Poghossian, A., Schöning, M. J., Fernández, V. M., & Katz, E. (2008). Optoelectronic Properties of Nanostructured Ensembles Controlled by Biomolecular Logic Systems. ACS Nano, 2(10), 2160-2166. doi:10.1021/nn8004558 es_ES
dc.description.references Pu, F., Ren, J., Yang, X., & Qu, X. (2011). Multivalued Logic Gates Based on DNA. Chemistry - A European Journal, 17(35), 9590-9594. doi:10.1002/chem.201101140 es_ES
dc.description.references Zhang, L.-X., Cai, S.-L., Zheng, Y.-B., Cao, X.-H., & Li, Y.-Q. (2011). Smart Homopolymer Modification to Single Glass Conical Nanopore Channels: Dual-Stimuli-Actuated Highly Efficient Ion Gating. Advanced Functional Materials, 21(11), 2103-2107. doi:10.1002/adfm.201002627 es_ES
dc.description.references Aguilella-Arzo, M., Cervera, J., Ramírez, P., & Mafé, S. (2006). Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration. Physical Review E, 73(4). doi:10.1103/physreve.73.041914 es_ES
dc.description.references Jimbo, T., Ramírez, P., Tanioka, A., Mafé, S., & Minoura, N. (2000). Passive Transport of Ionic Drugs through Membranes with pH-Dependent Fixed Charges. Journal of Colloid and Interface Science, 225(2), 447-454. doi:10.1006/jcis.2000.6779 es_ES
dc.description.references Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839-883. doi:10.1103/revmodphys.80.839 es_ES
dc.description.references Cheng, L.-J., & Guo, L. J. (2009). Ionic Current Rectification, Breakdown, and Switching in Heterogeneous Oxide Nanofluidic Devices. ACS Nano, 3(3), 575-584. doi:10.1021/nn8007542 es_ES
dc.description.references Ramírez, P., Rapp, H.-J., Mafé, S., & Bauer, B. (1994). Bipolar membranes under forward and reverse bias conditions. Theory vs. experiment. Journal of Electroanalytical Chemistry, 375(1-2), 101-108. doi:10.1016/0022-0728(94)03379-x es_ES
dc.description.references Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j es_ES
dc.description.references Gao, X. P. A., Zheng, G., & Lieber, C. M. (2010). Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors. Nano Letters, 10(2), 547-552. doi:10.1021/nl9034219 es_ES
dc.description.references Guan, W., Fan, R., & Reed, M. A. (2011). Field-effect reconfigurable nanofluidic ionic diodes. Nature Communications, 2(1). doi:10.1038/ncomms1514 es_ES
dc.description.references Jiang, Z., & Stein, D. (2011). Charge regulation in nanopore ionic field-effect transistors. Physical Review E, 83(3). doi:10.1103/physreve.83.031203 es_ES
dc.description.references Hu, N., Ai, Y., & Qian, S. (2012). Field effect control of electrokinetic transport in micro/nanofluidics. Sensors and Actuators B: Chemical, 161(1), 1150-1167. doi:10.1016/j.snb.2011.12.004 es_ES
dc.description.references Wang, G., Bohaty, A. K., Zharov, I., & White, H. S. (2006). Photon Gated Transport at the Glass Nanopore Electrode. Journal of the American Chemical Society, 128(41), 13553-13558. doi:10.1021/ja064274j es_ES
dc.description.references Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811 es_ES
dc.description.references Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a es_ES
dc.description.references Wen, L., Liu, Q., Ma, J., Tian, Y., Li, C., Bo, Z., & Jiang, L. (2012). Malachite Green Derivative-Functionalized Single Nanochannel: Light-and-pH Dual-Driven Ionic Gating. Advanced Materials, 24(46), 6193-6198. doi:10.1002/adma.201202673 es_ES
dc.description.references Wen, L., Ma, J., Tian, Y., Zhai, J., & Jiang, L. (2012). A Photo-induced, and Chemical-Driven, Smart-Gating Nanochannel. Small, 8(6), 838-842. doi:10.1002/smll.201101661 es_ES
dc.description.references Jiang, Y., Liu, N., Guo, W., Xia, F., & Jiang, L. (2012). Highly-Efficient Gating of Solid-State Nanochannels by DNA Supersandwich Structure Containing ATP Aptamers: A Nanofluidic IMPLICATION Logic Device. Journal of the American Chemical Society, 134(37), 15395-15401. doi:10.1021/ja3053333 es_ES
dc.description.references Andréasson, J., Pischel, U., Straight, S. D., Moore, T. A., Moore, A. L., & Gust, D. (2011). All-Photonic Multifunctional Molecular Logic Device. Journal of the American Chemical Society, 133(30), 11641-11648. doi:10.1021/ja203456h es_ES
dc.description.references Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845 es_ES
dc.description.references Tybrandt, K., Forchheimer, R., & Berggren, M. (2012). Logic gates based on ion transistors. Nature Communications, 3(1). doi:10.1038/ncomms1869 es_ES
dc.description.references Tybrandt, K., Gabrielsson, E. O., & Berggren, M. (2011). Toward Complementary Ionic Circuits: ThenpnIon Bipolar Junction Transistor. Journal of the American Chemical Society, 133(26), 10141-10145. doi:10.1021/ja200492c es_ES
dc.description.references Ayub, M., Ivanov, A., Instuli, E., Cecchini, M., Chansin, G., McGilvery, C., … Albrecht, T. (2010). Nanopore/electrode structures for single-molecule biosensing. Electrochimica Acta, 55(27), 8237-8243. doi:10.1016/j.electacta.2010.03.051 es_ES
dc.description.references He, Y., Gillespie, D., Boda, D., Vlassiouk, I., Eisenberg, R. S., & Siwy, Z. S. (2009). Tuning Transport Properties of Nanofluidic Devices with Local Charge Inversion. Journal of the American Chemical Society, 131(14), 5194-5202. doi:10.1021/ja808717u es_ES
dc.description.references Majd, S., Yusko, E. C., Billeh, Y. N., Macrae, M. X., Yang, J., & Mayer, M. (2010). Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Current Opinion in Biotechnology, 21(4), 439-476. doi:10.1016/j.copbio.2010.05.002 es_ES
dc.description.references Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27 es_ES
dc.description.references Wu, S., Wildhaber, F., Bertsch, A., Brugger, J., & Renaud, P. (2013). Field effect modulated nanofluidic diode membrane based on Al2O3/W heterogeneous nanopore arrays. Applied Physics Letters, 102(21), 213108. doi:10.1063/1.4807781 es_ES
dc.description.references Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748 es_ES
dc.description.references Momotenko, D., & Girault, H. H. (2011). Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. Journal of the American Chemical Society, 133(37), 14496-14499. doi:10.1021/ja2048368 es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026 es_ES
dc.description.references Duan, X., Fu, T.-M., Liu, J., & Lieber, C. M. (2013). Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today, 8(4), 351-373. doi:10.1016/j.nantod.2013.05.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem