- -

Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model

Mostrar el registro completo del ítem

Campos Frances, M.; Capilla, R.; Naya, F.; Futami, R.; Coque, T.; Moya, A.; Fernández-Lanza, V.... (2019). Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. mBio. 10(1):1-17. https://doi.org/10.1128/mBio.02460-18

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140197

Ficheros en el ítem

Metadatos del ítem

Título: Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model
Autor: Campos Frances, Marcelino Capilla, Rafael Naya, Fernando Futami, Ricardo Coque, Teresa Moya, Andrés Fernández-Lanza, Val Cantón, Rafael Sempere Luna, José María Llorens, Carlos Baquero, Fernando
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Membrane computing is a bio-inspired computing paradigm whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. ...[+]
Palabras clave: Antibiotic resistance , Membrane computing , Multilevel , Computer modeling , Mathematical modeling
Derechos de uso: Reconocimiento (by)
Fuente:
mBio. (eissn: 2150-7511 )
DOI: 10.1128/mBio.02460-18
Editorial:
American Society for Microbiology
Versión del editor: https://doi.org/10.1128/mBio.02460-18
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/282004/EU/Evolution and Transfer of Antibiotic Resistance/
...[+]
info:eu-repo/grantAgreement/EC/FP7/282004/EU/Evolution and Transfer of Antibiotic Resistance/
info:eu-repo/grantAgreement/MINECO//SAF2015-65878-R/ES/ESTABILIDAD, RESILIENCIA Y REDUNDANCIA FUNCIONAL DE LA MICROBIOTA INTESTINAL HUMANA DURANTE EL DESARROLLO Y EN RESPUESTA AL ESTRES ANTIBIOTICO Y A CLOSTRIDIUM DIFFICILE/
info:eu-repo/grantAgreement/MINECO//PI15%2F00818/ES/Desarrollo de un simulador computacional de membranas para el estudio de la dinámica trans-jerárquica en la evolución de resistencia bacteriana a los antibióticos./
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F065/
info:eu-repo/grantAgreement/MICINN//FIS18-1942/
info:eu-repo/grantAgreement/CIBER-BBN//CB06%2F02%2F0053/
info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3691/
info:eu-repo/grantAgreement/MINECO//AC16%2F00036/ES/DEVELOPMENT OF BIODEGRADABLE POLYMERIC NANOPARTICLES FOR CONTROLLED RELEASE OF ANTI-GLAUCOMA AGENTS. IN-VITRO & IN-VIVO EVALUATION OF THEIR SAFETY AND EFFICACY./
[-]
Agradecimientos:
This work was supported by the European Commission, Seven Framework Program (EVOTAR; FP7-HEALTH-282004) to F. Baquero, T. Coque, V. Fernandez-Lanza, and M. Campos; the Instituto de Salud Carlos III of Spain (Plan Estatal ...[+]
Tipo: Artículo

References

Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510-518. doi:10.1038/nrmicro909

Baquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00015

Cantón, R., & Ruiz-Garbajosa, P. (2011). Co-resistance: an opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology, 11(5), 477-485. doi:10.1016/j.coph.2011.07.007 [+]
Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510-518. doi:10.1038/nrmicro909

Baquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00015

Cantón, R., & Ruiz-Garbajosa, P. (2011). Co-resistance: an opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology, 11(5), 477-485. doi:10.1016/j.coph.2011.07.007

Baquero, F., & Coque, T. M. (2011). Multilevel population genetics in antibiotic resistance. FEMS Microbiology Reviews, 35(5), 705-706. doi:10.1111/j.1574-6976.2011.00293.x

GÜNTHER, F., & FOLKE, C. (1993). CHARACTERISTICS OF NESTED LIVING SYSTEMS. Journal of Biological Systems, 01(03), 257-274. doi:10.1142/s0218339093000173

Păun, G. (2000). Computing with Membranes. Journal of Computer and System Sciences, 61(1), 108-143. doi:10.1006/jcss.1999.1693

7. Frisco P, Gheorghe M, Pérez-Jiménez MJ. 2014. Applications of membrane computing to systems and synthetic biology. Springer, Heidelberg, Germany.

Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodriguez, I., Carrasco, P., … Baquero, F. (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct, 10(1). doi:10.1186/s13062-015-0070-9

Baquero, F. (2017). Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture. FEMS Microbiology Reviews, 41(6), 816-827. doi:10.1093/femsre/fux042

Baquero, F., Coque, T. M., & de la Cruz, F. (2011). Ecology and Evolution as Targets: the Need for Novel Eco-Evo Drugs and Strategies To Fight Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 55(8), 3649-3660. doi:10.1128/aac.00013-11

Baquero, F., & Martínez, J.-L. (2017). Interventions on Metabolism: Making Antibiotic-Susceptible Bacteria. mBio, 8(6). doi:10.1128/mbio.01950-17

Fondi, M., Karkman, A., Tamminen, M. V., Bosi, E., Virta, M., Fani, R., … McInerney, J. O. (2016). «Every Gene Is Everywhere but the Environment Selects»: Global Geolocalization of Gene Sharing in Environmental Samples through Network Analysis. Genome Biology and Evolution, 8(5), 1388-1400. doi:10.1093/gbe/evw077

Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241-244. doi:10.1038/nature10571

Fuzi, M. (2016). Dissimilar Fitness Associated with Resistance to Fluoroquinolones Influences Clonal Dynamics of Various Multiresistant Bacteria. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01017

Fuzi, M., Szabo, D., & Csercsik, R. (2017). Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02261

Lipsitch, M., Bergstrom, C. T., & Levin, B. R. (2000). The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proceedings of the National Academy of Sciences, 97(4), 1938-1943. doi:10.1073/pnas.97.4.1938

Lehtinen, S., Blanquart, F., Croucher, N. J., Turner, P., Lipsitch, M., & Fraser, C. (2017). Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proceedings of the National Academy of Sciences, 114(5), 1075-1080. doi:10.1073/pnas.1617849114

Lanza, V. F., Baquero, F., Martínez, J. L., Ramos-Ruíz, R., González-Zorn, B., Andremont, A., … Coque, T. M. (2018). In-depth resistome analysis by targeted metagenomics. Microbiome, 6(1). doi:10.1186/s40168-017-0387-y

Woolhouse, M. (2019). Quantifying Transmission. Microbial Transmission, 281-289. doi:10.1128/microbiolspec.mtbp-0005-2016

Del Campo, R., Sánchez‐Díaz, A. M., Zamora, J., Torres, C., Cintas, L. M., Franco, E., … Baquero, F. (2014). Individual variability in finger‐to‐finger transmission efficiency of Enterococcus faecium clones. MicrobiologyOpen, 3(1), 128-132. doi:10.1002/mbo3.156

Faith, J. J., Colombel, J.-F., & Gordon, J. I. (2015). Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proceedings of the National Academy of Sciences, 112(3), 633-640. doi:10.1073/pnas.1418781112

Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., … Relman, D. A. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences, 103(3), 732-737. doi:10.1073/pnas.0506655103

Huijben, S., Bell, A. S., Sim, D. G., Tomasello, D., Mideo, N., Day, T., & Read, A. F. (2013). Aggressive Chemotherapy and the Selection of Drug Resistant Pathogens. PLoS Pathogens, 9(9), e1003578. doi:10.1371/journal.ppat.1003578

Day, T., & Read, A. F. (2016). Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance? PLOS Computational Biology, 12(1), e1004689. doi:10.1371/journal.pcbi.1004689

Kouyos, R. D., Metcalf, C. J. E., Birger, R., Klein, E. Y., Abel zur Wiesch, P., Ankomah, P., … Grenfell, B. (2014). The path of least resistance: aggressive or moderate treatment? Proceedings of the Royal Society B: Biological Sciences, 281(1794), 20140566. doi:10.1098/rspb.2014.0566

Kouyos, R. D., Abel zur Wiesch, P., & Bonhoeffer, S. (2011). On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community. PLoS Pathogens, 7(4), e1001334. doi:10.1371/journal.ppat.1001334

Oz, T., Guvenek, A., Yildiz, S., Karaboga, E., Tamer, Y. T., Mumcuyan, N., … Toprak, E. (2014). Strength of Selection Pressure Is an Important Parameter Contributing to the Complexity of Antibiotic Resistance Evolution. Molecular Biology and Evolution, 31(9), 2387-2401. doi:10.1093/molbev/msu191

Martínez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68-77. doi:10.3109/03009734.2014.901444

Baym, M., Lieberman, T. D., Kelsic, E. D., Chait, R., Gross, R., Yelin, I., & Kishony, R. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353(6304), 1147-1151. doi:10.1126/science.aag0822

Hermsen, R., & Hwa, T. (2010). Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments. Physical Review Letters, 105(24). doi:10.1103/physrevlett.105.248104

31. Coen P. 2012. Models of hospital acquired infection, p 39–64. In Sudhakar C. (ed) Infection control—updates. InTech Publishers, London, United Kingdom.

32. Chow SJ. 2011. Heuristics, concepts, and cognitive architecture: toward understanding how the mind works. Electronic Thesis and Dissertation Repository, 128. https://ir.lib.uwo.ca/etd/128.

Levin, B. R., Baquero, F., Ankomah, P. (Pierre), & McCall, I. C. (2017). Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections. Trends in Microbiology, 25(11), 878-892. doi:10.1016/j.tim.2017.07.005

Schmidt, G. V., Mellerup, A., Christiansen, L. E., Ståhl, M., Olsen, J. E., & Angen, Ø. (2015). Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches. PLOS ONE, 10(6), e0131672. doi:10.1371/journal.pone.0131672

Browne, H. P., Neville, B. A., Forster, S. C., & Lawley, T. D. (2017). Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 15(9), 531-543. doi:10.1038/nrmicro.2017.50

DALLANTONIA, M., COEN, P., WILKS, M., WHILEY, A., & MILLAR, M. (2005). Competition between methicillin-sensitive and -resistant in the anterior nares. Journal of Hospital Infection, 61(1), 62-67. doi:10.1016/j.jhin.2005.01.008

Austin, D. J., & Anderson, R. M. (1999). Transmission Dynamics of Epidemic Methicillin‐ResistantStaphylococcus aureusand Vancomycin‐Resistant Enterococci in England and Wales. The Journal of Infectious Diseases, 179(4), 883-891. doi:10.1086/314682

Gerrish, P. J., & Lenski, R. E. (1998). Genetica, 102/103, 127-144. doi:10.1023/a:1017067816551

Austin, D. J., & Anderson, R. M. (1999). Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1384), 721-738. doi:10.1098/rstb.1999.0425

Webb, G. F., D’Agata, E. M. C., Magal, P., & Ruan, S. (2005). A model of antibiotic-resistant bacterial epidemics in hospitals. Proceedings of the National Academy of Sciences, 102(37), 13343-13348. doi:10.1073/pnas.0504053102

D’Agata, E. M. C., Magal, P., Olivier, D., Ruan, S., & Webb, G. F. (2007). Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration. Journal of Theoretical Biology, 249(3), 487-499. doi:10.1016/j.jtbi.2007.08.011

D’Agata, E. M. C., Dupont-Rouzeyrol, M., Magal, P., Olivier, D., & Ruan, S. (2008). The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria. PLoS ONE, 3(12), e4036. doi:10.1371/journal.pone.0004036

Haber, M., Levin, B. R., & Kramarz, P. (2010). Antibiotic control of antibiotic resistance in hospitals: a simulation study. BMC Infectious Diseases, 10(1). doi:10.1186/1471-2334-10-254

Bonhoeffer, S., Lipsitch, M., & Levin, B. R. (1997). Evaluating treatment protocols to prevent antibiotic resistance. Proceedings of the National Academy of Sciences, 94(22), 12106-12111. doi:10.1073/pnas.94.22.12106

Bonten, M. J. M., Austin, D. J., & Lipsitch, M. (2001). Understanding the Spread of Antibiotic Resistant Pathogens in Hospitals: Mathematical Models as Tools for Control. Clinical Infectious Diseases, 33(10), 1739-1746. doi:10.1086/323761

Mullineaux-Sanders, C., Suez, J., Elinav, E., & Frankel, G. (2018). Sieving through gut models of colonization resistance. Nature Microbiology, 3(2), 132-140. doi:10.1038/s41564-017-0095-1

Spicknall, I. H., Foxman, B., Marrs, C. F., & Eisenberg, J. N. S. (2013). A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization. American Journal of Epidemiology, 178(4), 508-520. doi:10.1093/aje/kwt017

Llop, P., Latorre, A., & Moya, A. (2019). Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System. Microbial Transmission, 291-309. doi:10.1128/microbiolspec.mtbp-0007-2016

Colomer, M. À., Margalida, A., Sanuy, D., & Pérez-Jiménez, M. J. (2011). A bio-inspired computing model as a new tool for modeling ecosystems: The avian scavengers as a case study. Ecological Modelling, 222(1), 33-47. doi:10.1016/j.ecolmodel.2010.09.012

Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A Model of the Quorum Sensing System in Vibrio fischeri Using P Systems. Artificial Life, 14(1), 95-109. doi:10.1162/artl.2008.14.1.95

Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). Modelling gene expression control using P systems: The Lac Operon, a case study. Biosystems, 91(3), 438-457. doi:10.1016/j.biosystems.2007.02.011

Bootsma, M., Bonten, M., Nijssen, S., Fluit, A., & Diekmann, O. (2007). An Algorithm to Estimate the Importance of Bacterial Acquisition Routes in Hospital Settings. American Journal of Epidemiology, 166(7), 841-851. doi:10.1093/aje/kwm149

Wingard, E., Shlaes, J. H., Mortimer, E. A., & Shlaes, D. M. (1993). Colonization and Cross-Colonization of Nursing Home Patients with Trimethoprim-Resistant Gram-Negative Bacilli. Clinical Infectious Diseases, 16(1), 75-81. doi:10.1093/clinids/16.1.75

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem