- -

Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos Frances, Marcelino es_ES
dc.contributor.author Capilla, Rafael es_ES
dc.contributor.author Naya, Fernando es_ES
dc.contributor.author Futami, Ricardo es_ES
dc.contributor.author Coque, Teresa es_ES
dc.contributor.author Moya, Andrés es_ES
dc.contributor.author Fernández-Lanza, Val es_ES
dc.contributor.author Cantón, Rafael es_ES
dc.contributor.author Sempere Luna, José María es_ES
dc.contributor.author Llorens, Carlos es_ES
dc.contributor.author Baquero, Fernando es_ES
dc.date.accessioned 2020-04-06T08:56:01Z
dc.date.available 2020-04-06T08:56:01Z
dc.date.issued 2019-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140197
dc.description.abstract [EN] Membrane computing is a bio-inspired computing paradigm whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. It uses nested "membrane-surrounded entities" able to divide, propagate, and die; to be transferred into other membranes; to exchange informative material according to flexible rules; and to mutate and be selected by external agents. This allows the exploration of hierarchical interactive dynamics resulting from the probabilistic interaction of genes (phenotypes), clones, species, hosts, environments, and antibiotic challenges. Our model facilitates analysis of several aspects of the rules that govern the multilevel evolutionary biology of antibiotic resistance. We examined a number of selected landscapes where we predict the effects of different rates of patient flow from hospital to the community and vice versa, the cross-transmission rates between patients with bacterial propagules of different sizes, the proportion of patients treated with antibiotics, and the antibiotics and dosing found in the opening spaces in the microbiota where resistant phenotypes multiply. We also evaluated the selective strengths of some drugs and the influence of the time 0 resistance composition of the species and bacterial clones in the evolution of resistance phenotypes. In summary, we provide case studies analyzing the hierarchical dynamics of antibiotic resistance using a novel computing model with reciprocity within and between levels of biological organization, a type of approach that may be expanded in the multilevel analysis of complex microbial landscapes. es_ES
dc.description.sponsorship This work was supported by the European Commission, Seven Framework Program (EVOTAR; FP7-HEALTH-282004) to F. Baquero, T. Coque, V. Fernandez-Lanza, and M. Campos; the Instituto de Salud Carlos III of Spain (Plan Estatal de I+D+i 2013-2016, grant PI15-00818 and FIS18-1942; CIBERESP, grant CB06/02/0053, and the EU Joint Programming Initiative JPIAMR2016-AC16/00036 to F. Baquero; the Regional Government of Madrid (InGEMICS-C; S2017/BMD-3691) to T. Coque and F. Baquero; and SAF2015-65878-R (MINECO, Spain) and PrometeoII/2014/065 (Generalitat Valenciana, Spain) to A. Moya (all cofinanced by the European Development Regional Fund [ERDF] "A Way to Achieve Europe"). es_ES
dc.language Inglés es_ES
dc.publisher American Society for Microbiology es_ES
dc.relation.ispartof mBio es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Antibiotic resistance es_ES
dc.subject Membrane computing es_ES
dc.subject Multilevel es_ES
dc.subject Computer modeling es_ES
dc.subject Mathematical modeling es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1128/mBio.02460-18 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/282004/EU/Evolution and Transfer of Antibiotic Resistance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2015-65878-R/ES/ESTABILIDAD, RESILIENCIA Y REDUNDANCIA FUNCIONAL DE LA MICROBIOTA INTESTINAL HUMANA DURANTE EL DESARROLLO Y EN RESPUESTA AL ESTRES ANTIBIOTICO Y A CLOSTRIDIUM DIFFICILE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI15%2F00818/ES/Desarrollo de un simulador computacional de membranas para el estudio de la dinámica trans-jerárquica en la evolución de resistencia bacteriana a los antibióticos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F065/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS18-1942/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIBER-BBN//CB06%2F02%2F0053/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3691/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AC16%2F00036/ES/DEVELOPMENT OF BIODEGRADABLE POLYMERIC NANOPARTICLES FOR CONTROLLED RELEASE OF ANTI-GLAUCOMA AGENTS. IN-VITRO & IN-VIVO EVALUATION OF THEIR SAFETY AND EFFICACY./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Campos Frances, M.; Capilla, R.; Naya, F.; Futami, R.; Coque, T.; Moya, A.; Fernández-Lanza, V.... (2019). Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. mBio. 10(1):1-17. https://doi.org/10.1128/mBio.02460-18 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1128/mBio.02460-18 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2150-7511 es_ES
dc.relation.pasarela S\394717 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510-518. doi:10.1038/nrmicro909 es_ES
dc.description.references Baquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00015 es_ES
dc.description.references Cantón, R., & Ruiz-Garbajosa, P. (2011). Co-resistance: an opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology, 11(5), 477-485. doi:10.1016/j.coph.2011.07.007 es_ES
dc.description.references Baquero, F., & Coque, T. M. (2011). Multilevel population genetics in antibiotic resistance. FEMS Microbiology Reviews, 35(5), 705-706. doi:10.1111/j.1574-6976.2011.00293.x es_ES
dc.description.references GÜNTHER, F., & FOLKE, C. (1993). CHARACTERISTICS OF NESTED LIVING SYSTEMS. Journal of Biological Systems, 01(03), 257-274. doi:10.1142/s0218339093000173 es_ES
dc.description.references Păun, G. (2000). Computing with Membranes. Journal of Computer and System Sciences, 61(1), 108-143. doi:10.1006/jcss.1999.1693 es_ES
dc.description.references 7. Frisco P, Gheorghe M, Pérez-Jiménez MJ. 2014. Applications of membrane computing to systems and synthetic biology. Springer, Heidelberg, Germany. es_ES
dc.description.references Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodriguez, I., Carrasco, P., … Baquero, F. (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct, 10(1). doi:10.1186/s13062-015-0070-9 es_ES
dc.description.references Baquero, F. (2017). Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture. FEMS Microbiology Reviews, 41(6), 816-827. doi:10.1093/femsre/fux042 es_ES
dc.description.references Baquero, F., Coque, T. M., & de la Cruz, F. (2011). Ecology and Evolution as Targets: the Need for Novel Eco-Evo Drugs and Strategies To Fight Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 55(8), 3649-3660. doi:10.1128/aac.00013-11 es_ES
dc.description.references Baquero, F., & Martínez, J.-L. (2017). Interventions on Metabolism: Making Antibiotic-Susceptible Bacteria. mBio, 8(6). doi:10.1128/mbio.01950-17 es_ES
dc.description.references Fondi, M., Karkman, A., Tamminen, M. V., Bosi, E., Virta, M., Fani, R., … McInerney, J. O. (2016). «Every Gene Is Everywhere but the Environment Selects»: Global Geolocalization of Gene Sharing in Environmental Samples through Network Analysis. Genome Biology and Evolution, 8(5), 1388-1400. doi:10.1093/gbe/evw077 es_ES
dc.description.references Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241-244. doi:10.1038/nature10571 es_ES
dc.description.references Fuzi, M. (2016). Dissimilar Fitness Associated with Resistance to Fluoroquinolones Influences Clonal Dynamics of Various Multiresistant Bacteria. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01017 es_ES
dc.description.references Fuzi, M., Szabo, D., & Csercsik, R. (2017). Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02261 es_ES
dc.description.references Lipsitch, M., Bergstrom, C. T., & Levin, B. R. (2000). The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proceedings of the National Academy of Sciences, 97(4), 1938-1943. doi:10.1073/pnas.97.4.1938 es_ES
dc.description.references Lehtinen, S., Blanquart, F., Croucher, N. J., Turner, P., Lipsitch, M., & Fraser, C. (2017). Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proceedings of the National Academy of Sciences, 114(5), 1075-1080. doi:10.1073/pnas.1617849114 es_ES
dc.description.references Lanza, V. F., Baquero, F., Martínez, J. L., Ramos-Ruíz, R., González-Zorn, B., Andremont, A., … Coque, T. M. (2018). In-depth resistome analysis by targeted metagenomics. Microbiome, 6(1). doi:10.1186/s40168-017-0387-y es_ES
dc.description.references Woolhouse, M. (2019). Quantifying Transmission. Microbial Transmission, 281-289. doi:10.1128/microbiolspec.mtbp-0005-2016 es_ES
dc.description.references Del Campo, R., Sánchez‐Díaz, A. M., Zamora, J., Torres, C., Cintas, L. M., Franco, E., … Baquero, F. (2014). Individual variability in finger‐to‐finger transmission efficiency of Enterococcus faecium clones. MicrobiologyOpen, 3(1), 128-132. doi:10.1002/mbo3.156 es_ES
dc.description.references Faith, J. J., Colombel, J.-F., & Gordon, J. I. (2015). Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proceedings of the National Academy of Sciences, 112(3), 633-640. doi:10.1073/pnas.1418781112 es_ES
dc.description.references Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., … Relman, D. A. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences, 103(3), 732-737. doi:10.1073/pnas.0506655103 es_ES
dc.description.references Huijben, S., Bell, A. S., Sim, D. G., Tomasello, D., Mideo, N., Day, T., & Read, A. F. (2013). Aggressive Chemotherapy and the Selection of Drug Resistant Pathogens. PLoS Pathogens, 9(9), e1003578. doi:10.1371/journal.ppat.1003578 es_ES
dc.description.references Day, T., & Read, A. F. (2016). Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance? PLOS Computational Biology, 12(1), e1004689. doi:10.1371/journal.pcbi.1004689 es_ES
dc.description.references Kouyos, R. D., Metcalf, C. J. E., Birger, R., Klein, E. Y., Abel zur Wiesch, P., Ankomah, P., … Grenfell, B. (2014). The path of least resistance: aggressive or moderate treatment? Proceedings of the Royal Society B: Biological Sciences, 281(1794), 20140566. doi:10.1098/rspb.2014.0566 es_ES
dc.description.references Kouyos, R. D., Abel zur Wiesch, P., & Bonhoeffer, S. (2011). On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community. PLoS Pathogens, 7(4), e1001334. doi:10.1371/journal.ppat.1001334 es_ES
dc.description.references Oz, T., Guvenek, A., Yildiz, S., Karaboga, E., Tamer, Y. T., Mumcuyan, N., … Toprak, E. (2014). Strength of Selection Pressure Is an Important Parameter Contributing to the Complexity of Antibiotic Resistance Evolution. Molecular Biology and Evolution, 31(9), 2387-2401. doi:10.1093/molbev/msu191 es_ES
dc.description.references Martínez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68-77. doi:10.3109/03009734.2014.901444 es_ES
dc.description.references Baym, M., Lieberman, T. D., Kelsic, E. D., Chait, R., Gross, R., Yelin, I., & Kishony, R. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353(6304), 1147-1151. doi:10.1126/science.aag0822 es_ES
dc.description.references Hermsen, R., & Hwa, T. (2010). Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments. Physical Review Letters, 105(24). doi:10.1103/physrevlett.105.248104 es_ES
dc.description.references 31. Coen P. 2012. Models of hospital acquired infection, p 39–64. In Sudhakar C. (ed) Infection control—updates. InTech Publishers, London, United Kingdom. es_ES
dc.description.references 32. Chow SJ. 2011. Heuristics, concepts, and cognitive architecture: toward understanding how the mind works. Electronic Thesis and Dissertation Repository, 128. https://ir.lib.uwo.ca/etd/128. es_ES
dc.description.references Levin, B. R., Baquero, F., Ankomah, P. (Pierre), & McCall, I. C. (2017). Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections. Trends in Microbiology, 25(11), 878-892. doi:10.1016/j.tim.2017.07.005 es_ES
dc.description.references Schmidt, G. V., Mellerup, A., Christiansen, L. E., Ståhl, M., Olsen, J. E., & Angen, Ø. (2015). Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches. PLOS ONE, 10(6), e0131672. doi:10.1371/journal.pone.0131672 es_ES
dc.description.references Browne, H. P., Neville, B. A., Forster, S. C., & Lawley, T. D. (2017). Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 15(9), 531-543. doi:10.1038/nrmicro.2017.50 es_ES
dc.description.references DALLANTONIA, M., COEN, P., WILKS, M., WHILEY, A., & MILLAR, M. (2005). Competition between methicillin-sensitive and -resistant in the anterior nares. Journal of Hospital Infection, 61(1), 62-67. doi:10.1016/j.jhin.2005.01.008 es_ES
dc.description.references Austin, D. J., & Anderson, R. M. (1999). Transmission Dynamics of Epidemic Methicillin‐ResistantStaphylococcus aureusand Vancomycin‐Resistant Enterococci in England and Wales. The Journal of Infectious Diseases, 179(4), 883-891. doi:10.1086/314682 es_ES
dc.description.references Gerrish, P. J., & Lenski, R. E. (1998). Genetica, 102/103, 127-144. doi:10.1023/a:1017067816551 es_ES
dc.description.references Austin, D. J., & Anderson, R. M. (1999). Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1384), 721-738. doi:10.1098/rstb.1999.0425 es_ES
dc.description.references Webb, G. F., D’Agata, E. M. C., Magal, P., & Ruan, S. (2005). A model of antibiotic-resistant bacterial epidemics in hospitals. Proceedings of the National Academy of Sciences, 102(37), 13343-13348. doi:10.1073/pnas.0504053102 es_ES
dc.description.references D’Agata, E. M. C., Magal, P., Olivier, D., Ruan, S., & Webb, G. F. (2007). Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration. Journal of Theoretical Biology, 249(3), 487-499. doi:10.1016/j.jtbi.2007.08.011 es_ES
dc.description.references D’Agata, E. M. C., Dupont-Rouzeyrol, M., Magal, P., Olivier, D., & Ruan, S. (2008). The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria. PLoS ONE, 3(12), e4036. doi:10.1371/journal.pone.0004036 es_ES
dc.description.references Haber, M., Levin, B. R., & Kramarz, P. (2010). Antibiotic control of antibiotic resistance in hospitals: a simulation study. BMC Infectious Diseases, 10(1). doi:10.1186/1471-2334-10-254 es_ES
dc.description.references Bonhoeffer, S., Lipsitch, M., & Levin, B. R. (1997). Evaluating treatment protocols to prevent antibiotic resistance. Proceedings of the National Academy of Sciences, 94(22), 12106-12111. doi:10.1073/pnas.94.22.12106 es_ES
dc.description.references Bonten, M. J. M., Austin, D. J., & Lipsitch, M. (2001). Understanding the Spread of Antibiotic Resistant Pathogens in Hospitals: Mathematical Models as Tools for Control. Clinical Infectious Diseases, 33(10), 1739-1746. doi:10.1086/323761 es_ES
dc.description.references Mullineaux-Sanders, C., Suez, J., Elinav, E., & Frankel, G. (2018). Sieving through gut models of colonization resistance. Nature Microbiology, 3(2), 132-140. doi:10.1038/s41564-017-0095-1 es_ES
dc.description.references Spicknall, I. H., Foxman, B., Marrs, C. F., & Eisenberg, J. N. S. (2013). A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization. American Journal of Epidemiology, 178(4), 508-520. doi:10.1093/aje/kwt017 es_ES
dc.description.references Llop, P., Latorre, A., & Moya, A. (2019). Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System. Microbial Transmission, 291-309. doi:10.1128/microbiolspec.mtbp-0007-2016 es_ES
dc.description.references Colomer, M. À., Margalida, A., Sanuy, D., & Pérez-Jiménez, M. J. (2011). A bio-inspired computing model as a new tool for modeling ecosystems: The avian scavengers as a case study. Ecological Modelling, 222(1), 33-47. doi:10.1016/j.ecolmodel.2010.09.012 es_ES
dc.description.references Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A Model of the Quorum Sensing System in Vibrio fischeri Using P Systems. Artificial Life, 14(1), 95-109. doi:10.1162/artl.2008.14.1.95 es_ES
dc.description.references Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). Modelling gene expression control using P systems: The Lac Operon, a case study. Biosystems, 91(3), 438-457. doi:10.1016/j.biosystems.2007.02.011 es_ES
dc.description.references Bootsma, M., Bonten, M., Nijssen, S., Fluit, A., & Diekmann, O. (2007). An Algorithm to Estimate the Importance of Bacterial Acquisition Routes in Hospital Settings. American Journal of Epidemiology, 166(7), 841-851. doi:10.1093/aje/kwm149 es_ES
dc.description.references Wingard, E., Shlaes, J. H., Mortimer, E. A., & Shlaes, D. M. (1993). Colonization and Cross-Colonization of Nursing Home Patients with Trimethoprim-Resistant Gram-Negative Bacilli. Clinical Infectious Diseases, 16(1), 75-81. doi:10.1093/clinids/16.1.75 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem