Mostrar el registro sencillo del ítem
dc.contributor.author | Campos Frances, Marcelino | es_ES |
dc.contributor.author | Capilla, Rafael | es_ES |
dc.contributor.author | Naya, Fernando | es_ES |
dc.contributor.author | Futami, Ricardo | es_ES |
dc.contributor.author | Coque, Teresa | es_ES |
dc.contributor.author | Moya, Andrés | es_ES |
dc.contributor.author | Fernández-Lanza, Val | es_ES |
dc.contributor.author | Cantón, Rafael | es_ES |
dc.contributor.author | Sempere Luna, José María | es_ES |
dc.contributor.author | Llorens, Carlos | es_ES |
dc.contributor.author | Baquero, Fernando | es_ES |
dc.date.accessioned | 2020-04-06T08:56:01Z | |
dc.date.available | 2020-04-06T08:56:01Z | |
dc.date.issued | 2019-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140197 | |
dc.description.abstract | [EN] Membrane computing is a bio-inspired computing paradigm whose devices are the so-called membrane systems or P systems. The P system designed in this work reproduces complex biological landscapes in the computer world. It uses nested "membrane-surrounded entities" able to divide, propagate, and die; to be transferred into other membranes; to exchange informative material according to flexible rules; and to mutate and be selected by external agents. This allows the exploration of hierarchical interactive dynamics resulting from the probabilistic interaction of genes (phenotypes), clones, species, hosts, environments, and antibiotic challenges. Our model facilitates analysis of several aspects of the rules that govern the multilevel evolutionary biology of antibiotic resistance. We examined a number of selected landscapes where we predict the effects of different rates of patient flow from hospital to the community and vice versa, the cross-transmission rates between patients with bacterial propagules of different sizes, the proportion of patients treated with antibiotics, and the antibiotics and dosing found in the opening spaces in the microbiota where resistant phenotypes multiply. We also evaluated the selective strengths of some drugs and the influence of the time 0 resistance composition of the species and bacterial clones in the evolution of resistance phenotypes. In summary, we provide case studies analyzing the hierarchical dynamics of antibiotic resistance using a novel computing model with reciprocity within and between levels of biological organization, a type of approach that may be expanded in the multilevel analysis of complex microbial landscapes. | es_ES |
dc.description.sponsorship | This work was supported by the European Commission, Seven Framework Program (EVOTAR; FP7-HEALTH-282004) to F. Baquero, T. Coque, V. Fernandez-Lanza, and M. Campos; the Instituto de Salud Carlos III of Spain (Plan Estatal de I+D+i 2013-2016, grant PI15-00818 and FIS18-1942; CIBERESP, grant CB06/02/0053, and the EU Joint Programming Initiative JPIAMR2016-AC16/00036 to F. Baquero; the Regional Government of Madrid (InGEMICS-C; S2017/BMD-3691) to T. Coque and F. Baquero; and SAF2015-65878-R (MINECO, Spain) and PrometeoII/2014/065 (Generalitat Valenciana, Spain) to A. Moya (all cofinanced by the European Development Regional Fund [ERDF] "A Way to Achieve Europe"). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Microbiology | es_ES |
dc.relation.ispartof | mBio | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Antibiotic resistance | es_ES |
dc.subject | Membrane computing | es_ES |
dc.subject | Multilevel | es_ES |
dc.subject | Computer modeling | es_ES |
dc.subject | Mathematical modeling | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1128/mBio.02460-18 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/282004/EU/Evolution and Transfer of Antibiotic Resistance/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2015-65878-R/ES/ESTABILIDAD, RESILIENCIA Y REDUNDANCIA FUNCIONAL DE LA MICROBIOTA INTESTINAL HUMANA DURANTE EL DESARROLLO Y EN RESPUESTA AL ESTRES ANTIBIOTICO Y A CLOSTRIDIUM DIFFICILE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//PI15%2F00818/ES/Desarrollo de un simulador computacional de membranas para el estudio de la dinámica trans-jerárquica en la evolución de resistencia bacteriana a los antibióticos./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F065/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS18-1942/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CIBER-BBN//CB06%2F02%2F0053/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//S2017%2FBMD-3691/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AC16%2F00036/ES/DEVELOPMENT OF BIODEGRADABLE POLYMERIC NANOPARTICLES FOR CONTROLLED RELEASE OF ANTI-GLAUCOMA AGENTS. IN-VITRO & IN-VIVO EVALUATION OF THEIR SAFETY AND EFFICACY./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Campos Frances, M.; Capilla, R.; Naya, F.; Futami, R.; Coque, T.; Moya, A.; Fernández-Lanza, V.... (2019). Simulating Multilevel Dynamics of Antimicrobial Resistance in a Membrane Computing Model. mBio. 10(1):1-17. https://doi.org/10.1128/mBio.02460-18 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1128/mBio.02460-18 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2150-7511 | es_ES |
dc.relation.pasarela | S\394717 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Baquero, F. (2004). From pieces to patterns: evolutionary engineering in bacterial pathogens. Nature Reviews Microbiology, 2(6), 510-518. doi:10.1038/nrmicro909 | es_ES |
dc.description.references | Baquero, F., Tedim, A. P., & Coque, T. M. (2013). Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00015 | es_ES |
dc.description.references | Cantón, R., & Ruiz-Garbajosa, P. (2011). Co-resistance: an opportunity for the bacteria and resistance genes. Current Opinion in Pharmacology, 11(5), 477-485. doi:10.1016/j.coph.2011.07.007 | es_ES |
dc.description.references | Baquero, F., & Coque, T. M. (2011). Multilevel population genetics in antibiotic resistance. FEMS Microbiology Reviews, 35(5), 705-706. doi:10.1111/j.1574-6976.2011.00293.x | es_ES |
dc.description.references | GÜNTHER, F., & FOLKE, C. (1993). CHARACTERISTICS OF NESTED LIVING SYSTEMS. Journal of Biological Systems, 01(03), 257-274. doi:10.1142/s0218339093000173 | es_ES |
dc.description.references | Păun, G. (2000). Computing with Membranes. Journal of Computer and System Sciences, 61(1), 108-143. doi:10.1006/jcss.1999.1693 | es_ES |
dc.description.references | 7. Frisco P, Gheorghe M, Pérez-Jiménez MJ. 2014. Applications of membrane computing to systems and synthetic biology. Springer, Heidelberg, Germany. | es_ES |
dc.description.references | Campos, M., Llorens, C., Sempere, J. M., Futami, R., Rodriguez, I., Carrasco, P., … Baquero, F. (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct, 10(1). doi:10.1186/s13062-015-0070-9 | es_ES |
dc.description.references | Baquero, F. (2017). Transmission as a basic process in microbial biology. Lwoff Award Prize Lecture. FEMS Microbiology Reviews, 41(6), 816-827. doi:10.1093/femsre/fux042 | es_ES |
dc.description.references | Baquero, F., Coque, T. M., & de la Cruz, F. (2011). Ecology and Evolution as Targets: the Need for Novel Eco-Evo Drugs and Strategies To Fight Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 55(8), 3649-3660. doi:10.1128/aac.00013-11 | es_ES |
dc.description.references | Baquero, F., & Martínez, J.-L. (2017). Interventions on Metabolism: Making Antibiotic-Susceptible Bacteria. mBio, 8(6). doi:10.1128/mbio.01950-17 | es_ES |
dc.description.references | Fondi, M., Karkman, A., Tamminen, M. V., Bosi, E., Virta, M., Fani, R., … McInerney, J. O. (2016). «Every Gene Is Everywhere but the Environment Selects»: Global Geolocalization of Gene Sharing in Environmental Samples through Network Analysis. Genome Biology and Evolution, 8(5), 1388-1400. doi:10.1093/gbe/evw077 | es_ES |
dc.description.references | Smillie, C. S., Smith, M. B., Friedman, J., Cordero, O. X., David, L. A., & Alm, E. J. (2011). Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 480(7376), 241-244. doi:10.1038/nature10571 | es_ES |
dc.description.references | Fuzi, M. (2016). Dissimilar Fitness Associated with Resistance to Fluoroquinolones Influences Clonal Dynamics of Various Multiresistant Bacteria. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01017 | es_ES |
dc.description.references | Fuzi, M., Szabo, D., & Csercsik, R. (2017). Double-Serine Fluoroquinolone Resistance Mutations Advance Major International Clones and Lineages of Various Multi-Drug Resistant Bacteria. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.02261 | es_ES |
dc.description.references | Lipsitch, M., Bergstrom, C. T., & Levin, B. R. (2000). The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions. Proceedings of the National Academy of Sciences, 97(4), 1938-1943. doi:10.1073/pnas.97.4.1938 | es_ES |
dc.description.references | Lehtinen, S., Blanquart, F., Croucher, N. J., Turner, P., Lipsitch, M., & Fraser, C. (2017). Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proceedings of the National Academy of Sciences, 114(5), 1075-1080. doi:10.1073/pnas.1617849114 | es_ES |
dc.description.references | Lanza, V. F., Baquero, F., Martínez, J. L., Ramos-Ruíz, R., González-Zorn, B., Andremont, A., … Coque, T. M. (2018). In-depth resistome analysis by targeted metagenomics. Microbiome, 6(1). doi:10.1186/s40168-017-0387-y | es_ES |
dc.description.references | Woolhouse, M. (2019). Quantifying Transmission. Microbial Transmission, 281-289. doi:10.1128/microbiolspec.mtbp-0005-2016 | es_ES |
dc.description.references | Del Campo, R., Sánchez‐Díaz, A. M., Zamora, J., Torres, C., Cintas, L. M., Franco, E., … Baquero, F. (2014). Individual variability in finger‐to‐finger transmission efficiency of Enterococcus faecium clones. MicrobiologyOpen, 3(1), 128-132. doi:10.1002/mbo3.156 | es_ES |
dc.description.references | Faith, J. J., Colombel, J.-F., & Gordon, J. I. (2015). Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proceedings of the National Academy of Sciences, 112(3), 633-640. doi:10.1073/pnas.1418781112 | es_ES |
dc.description.references | Bik, E. M., Eckburg, P. B., Gill, S. R., Nelson, K. E., Purdom, E. A., Francois, F., … Relman, D. A. (2006). Molecular analysis of the bacterial microbiota in the human stomach. Proceedings of the National Academy of Sciences, 103(3), 732-737. doi:10.1073/pnas.0506655103 | es_ES |
dc.description.references | Huijben, S., Bell, A. S., Sim, D. G., Tomasello, D., Mideo, N., Day, T., & Read, A. F. (2013). Aggressive Chemotherapy and the Selection of Drug Resistant Pathogens. PLoS Pathogens, 9(9), e1003578. doi:10.1371/journal.ppat.1003578 | es_ES |
dc.description.references | Day, T., & Read, A. F. (2016). Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance? PLOS Computational Biology, 12(1), e1004689. doi:10.1371/journal.pcbi.1004689 | es_ES |
dc.description.references | Kouyos, R. D., Metcalf, C. J. E., Birger, R., Klein, E. Y., Abel zur Wiesch, P., Ankomah, P., … Grenfell, B. (2014). The path of least resistance: aggressive or moderate treatment? Proceedings of the Royal Society B: Biological Sciences, 281(1794), 20140566. doi:10.1098/rspb.2014.0566 | es_ES |
dc.description.references | Kouyos, R. D., Abel zur Wiesch, P., & Bonhoeffer, S. (2011). On Being the Right Size: The Impact of Population Size and Stochastic Effects on the Evolution of Drug Resistance in Hospitals and the Community. PLoS Pathogens, 7(4), e1001334. doi:10.1371/journal.ppat.1001334 | es_ES |
dc.description.references | Oz, T., Guvenek, A., Yildiz, S., Karaboga, E., Tamer, Y. T., Mumcuyan, N., … Toprak, E. (2014). Strength of Selection Pressure Is an Important Parameter Contributing to the Complexity of Antibiotic Resistance Evolution. Molecular Biology and Evolution, 31(9), 2387-2401. doi:10.1093/molbev/msu191 | es_ES |
dc.description.references | Martínez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68-77. doi:10.3109/03009734.2014.901444 | es_ES |
dc.description.references | Baym, M., Lieberman, T. D., Kelsic, E. D., Chait, R., Gross, R., Yelin, I., & Kishony, R. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353(6304), 1147-1151. doi:10.1126/science.aag0822 | es_ES |
dc.description.references | Hermsen, R., & Hwa, T. (2010). Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments. Physical Review Letters, 105(24). doi:10.1103/physrevlett.105.248104 | es_ES |
dc.description.references | 31. Coen P. 2012. Models of hospital acquired infection, p 39–64. In Sudhakar C. (ed) Infection control—updates. InTech Publishers, London, United Kingdom. | es_ES |
dc.description.references | 32. Chow SJ. 2011. Heuristics, concepts, and cognitive architecture: toward understanding how the mind works. Electronic Thesis and Dissertation Repository, 128. https://ir.lib.uwo.ca/etd/128. | es_ES |
dc.description.references | Levin, B. R., Baquero, F., Ankomah, P. (Pierre), & McCall, I. C. (2017). Phagocytes, Antibiotics, and Self-Limiting Bacterial Infections. Trends in Microbiology, 25(11), 878-892. doi:10.1016/j.tim.2017.07.005 | es_ES |
dc.description.references | Schmidt, G. V., Mellerup, A., Christiansen, L. E., Ståhl, M., Olsen, J. E., & Angen, Ø. (2015). Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches. PLOS ONE, 10(6), e0131672. doi:10.1371/journal.pone.0131672 | es_ES |
dc.description.references | Browne, H. P., Neville, B. A., Forster, S. C., & Lawley, T. D. (2017). Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 15(9), 531-543. doi:10.1038/nrmicro.2017.50 | es_ES |
dc.description.references | DALLANTONIA, M., COEN, P., WILKS, M., WHILEY, A., & MILLAR, M. (2005). Competition between methicillin-sensitive and -resistant in the anterior nares. Journal of Hospital Infection, 61(1), 62-67. doi:10.1016/j.jhin.2005.01.008 | es_ES |
dc.description.references | Austin, D. J., & Anderson, R. M. (1999). Transmission Dynamics of Epidemic Methicillin‐ResistantStaphylococcus aureusand Vancomycin‐Resistant Enterococci in England and Wales. The Journal of Infectious Diseases, 179(4), 883-891. doi:10.1086/314682 | es_ES |
dc.description.references | Gerrish, P. J., & Lenski, R. E. (1998). Genetica, 102/103, 127-144. doi:10.1023/a:1017067816551 | es_ES |
dc.description.references | Austin, D. J., & Anderson, R. M. (1999). Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1384), 721-738. doi:10.1098/rstb.1999.0425 | es_ES |
dc.description.references | Webb, G. F., D’Agata, E. M. C., Magal, P., & Ruan, S. (2005). A model of antibiotic-resistant bacterial epidemics in hospitals. Proceedings of the National Academy of Sciences, 102(37), 13343-13348. doi:10.1073/pnas.0504053102 | es_ES |
dc.description.references | D’Agata, E. M. C., Magal, P., Olivier, D., Ruan, S., & Webb, G. F. (2007). Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration. Journal of Theoretical Biology, 249(3), 487-499. doi:10.1016/j.jtbi.2007.08.011 | es_ES |
dc.description.references | D’Agata, E. M. C., Dupont-Rouzeyrol, M., Magal, P., Olivier, D., & Ruan, S. (2008). The Impact of Different Antibiotic Regimens on the Emergence of Antimicrobial-Resistant Bacteria. PLoS ONE, 3(12), e4036. doi:10.1371/journal.pone.0004036 | es_ES |
dc.description.references | Haber, M., Levin, B. R., & Kramarz, P. (2010). Antibiotic control of antibiotic resistance in hospitals: a simulation study. BMC Infectious Diseases, 10(1). doi:10.1186/1471-2334-10-254 | es_ES |
dc.description.references | Bonhoeffer, S., Lipsitch, M., & Levin, B. R. (1997). Evaluating treatment protocols to prevent antibiotic resistance. Proceedings of the National Academy of Sciences, 94(22), 12106-12111. doi:10.1073/pnas.94.22.12106 | es_ES |
dc.description.references | Bonten, M. J. M., Austin, D. J., & Lipsitch, M. (2001). Understanding the Spread of Antibiotic Resistant Pathogens in Hospitals: Mathematical Models as Tools for Control. Clinical Infectious Diseases, 33(10), 1739-1746. doi:10.1086/323761 | es_ES |
dc.description.references | Mullineaux-Sanders, C., Suez, J., Elinav, E., & Frankel, G. (2018). Sieving through gut models of colonization resistance. Nature Microbiology, 3(2), 132-140. doi:10.1038/s41564-017-0095-1 | es_ES |
dc.description.references | Spicknall, I. H., Foxman, B., Marrs, C. F., & Eisenberg, J. N. S. (2013). A Modeling Framework for the Evolution and Spread of Antibiotic Resistance: Literature Review and Model Categorization. American Journal of Epidemiology, 178(4), 508-520. doi:10.1093/aje/kwt017 | es_ES |
dc.description.references | Llop, P., Latorre, A., & Moya, A. (2019). Experimental Epidemiology of Antibiotic Resistance: Looking for an Appropriate Animal Model System. Microbial Transmission, 291-309. doi:10.1128/microbiolspec.mtbp-0007-2016 | es_ES |
dc.description.references | Colomer, M. À., Margalida, A., Sanuy, D., & Pérez-Jiménez, M. J. (2011). A bio-inspired computing model as a new tool for modeling ecosystems: The avian scavengers as a case study. Ecological Modelling, 222(1), 33-47. doi:10.1016/j.ecolmodel.2010.09.012 | es_ES |
dc.description.references | Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). A Model of the Quorum Sensing System in Vibrio fischeri Using P Systems. Artificial Life, 14(1), 95-109. doi:10.1162/artl.2008.14.1.95 | es_ES |
dc.description.references | Romero-Campero, F. J., & Pérez-Jiménez, M. J. (2008). Modelling gene expression control using P systems: The Lac Operon, a case study. Biosystems, 91(3), 438-457. doi:10.1016/j.biosystems.2007.02.011 | es_ES |
dc.description.references | Bootsma, M., Bonten, M., Nijssen, S., Fluit, A., & Diekmann, O. (2007). An Algorithm to Estimate the Importance of Bacterial Acquisition Routes in Hospital Settings. American Journal of Epidemiology, 166(7), 841-851. doi:10.1093/aje/kwm149 | es_ES |
dc.description.references | Wingard, E., Shlaes, J. H., Mortimer, E. A., & Shlaes, D. M. (1993). Colonization and Cross-Colonization of Nursing Home Patients with Trimethoprim-Resistant Gram-Negative Bacilli. Clinical Infectious Diseases, 16(1), 75-81. doi:10.1093/clinids/16.1.75 | es_ES |