- -

Covalent functionalization of N-doped graphene by N-alkylation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Covalent functionalization of N-doped graphene by N-alkylation

Show full item record

Barrejon, M.; Primo Arnau, AM.; Gomez-Escalonilla, M.; Fierro, JLG.; García Gómez, H.; Langa, F. (2015). Covalent functionalization of N-doped graphene by N-alkylation. Chemical Communications. 51(95):16916-16919. https://doi.org/10.1039/c5cc06285c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140200

Files in this item

Item Metadata

Title: Covalent functionalization of N-doped graphene by N-alkylation
Author: Barrejon, M. Primo Arnau, Ana Maria Gomez-Escalonilla, M.J. Fierro, Jose Luis G. García Gómez, Hermenegildo Langa, F.
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Nitrogen doped graphene was modified by N-alkylation using a combination of phase transfer catalysis and microwave irradiation. The resulting derivatives of N-doped graphene were analysed showing that the bandgap of ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c5cc06285c
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c5cc06285c
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2013-48252-P/ES/NANOESTRUCTURAS DE CARBONO Y SISTEMAS PI-CONJUGADOS PARA APLICACIONES EN ELECTRONICA MOLECULAR Y FOTOVOLTAICA/
JCCM/PEII-2014-014-P
GV/PROMETEO/2013/019
MINECO/CTQ2012-32315
Thanks:
Financial support from MINECO (Spain) (CTQ2013-48252-P and CTQ2012-32315), Junta de Comunidades de Castilla-La Mancha (PEII-2014-014-P) and Generalidad Valenciana (Prometeo 13/19) is gratefully acknowledged. M.B. thanks ...[+]
Type: Artículo

References

Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950b [+]
Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950b

Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t

Lee, W. J., Maiti, U. N., Lee, J. M., Lim, J., Han, T. H., & Kim, S. O. (2014). Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 50(52), 6818. doi:10.1039/c4cc00146j

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Wang, X., Sun, G., Routh, P., Kim, D.-H., Huang, W., & Chen, P. (2014). Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 43(20), 7067-7098. doi:10.1039/c4cs00141a

Wu, M., Cao, C., & Jiang, J. Z. (2010). Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology, 21(50), 505202. doi:10.1088/0957-4484/21/50/505202

Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b

Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278

Gupta, M., Gaur, N., Kumar, P., Singh, S., Jaiswal, N. K., & Kondekar, P. N. (2015). Tailoring the electronic properties of a Z-shaped graphene field effect transistor via B/N doping. Physics Letters A, 379(7), 710-718. doi:10.1016/j.physleta.2014.12.046

Kim, H. S., Kim, H. S., Kim, S. S., & Kim, Y.-H. (2014). Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene. Nanoscale, 6(24), 14911-14918. doi:10.1039/c4nr05024j

Shirakawa, S., & Maruoka, K. (2013). Recent Developments in Asymmetric Phase-Transfer Reactions. Angewandte Chemie International Edition, 52(16), 4312-4348. doi:10.1002/anie.201206835

Langa, F., & la Cruz, P. (2007). Microwave Irradiation: An Important Tool to Functionalize Fullerenes and Carbon Nanotubes. Combinatorial Chemistry & High Throughput Screening, 10(9), 766-782. doi:10.2174/138620707783018487

Langa, F., de la Cruz, P., Espı́ldora, E., Garcı́a, J. J., Pérez, M. C., & de la Hoz, A. (2000). Fullerene chemistry under microwave irradiation. Carbon, 38(11-12), 1641-1646. doi:10.1016/s0008-6223(99)00284-5

Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284. doi:10.1002/anie.200400655

Keglevich, G., Grün, A., & Bálint, E. (2013). Microwave Irradiation and Phase Transfer Catalysis in C-, O- and N-Alkylation Reactions. Current Organic Synthesis, 10(5), 751-763. doi:10.2174/1570179411310050006

Ni, Z. H., Ponomarenko, L. A., Nair, R. R., Yang, R., Anissimova, S., Grigorieva, I. V., … Geim, A. K. (2010). On Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano Letters, 10(10), 3868-3872. doi:10.1021/nl101399r

Chang, C.-K., Kataria, S., Kuo, C.-C., Ganguly, A., Wang, B.-Y., Hwang, J.-Y., … Chen, K.-H. (2013). Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping. ACS Nano, 7(2), 1333-1341. doi:10.1021/nn3049158

Cuong, T. V., Pham, V. H., Tran, Q. T., Hahn, S. H., Chung, J. S., Shin, E. W., & Kim, E. J. (2010). Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Materials Letters, 64(3), 399-401. doi:10.1016/j.matlet.2009.11.029

Koh, Y. K., Bae, M.-H., Cahill, D. G., & Pop, E. (2010). Reliably Counting Atomic Planes of Few-Layer Graphene (n > 4). ACS Nano, 5(1), 269-274. doi:10.1021/nn102658a

Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., … Kong, J. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30-35. doi:10.1021/nl801827v

Pan, C.-T., Hinks, J. A., Ramasse, Q. M., Greaves, G., Bangert, U., Donnelly, S. E., & Haigh, S. J. (2014). In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene. Scientific Reports, 4(1). doi:10.1038/srep06334

Lu, Y.-F., Lo, S.-T., Lin, J.-C., Zhang, W., Lu, J.-Y., Liu, F.-H., … Li, L.-J. (2013). Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano, 7(8), 6522-6532. doi:10.1021/nn402102y

Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b), 15(2), 627-637. doi:10.1002/pssb.19660150224

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record