- -

Covalent functionalization of N-doped graphene by N-alkylation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Covalent functionalization of N-doped graphene by N-alkylation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrejon, M. es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author Gomez-Escalonilla, M.J. es_ES
dc.contributor.author Fierro, Jose Luis G. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Langa, F. es_ES
dc.date.accessioned 2020-04-06T08:56:07Z
dc.date.available 2020-04-06T08:56:07Z
dc.date.issued 2015 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140200
dc.description.abstract [EN] Nitrogen doped graphene was modified by N-alkylation using a combination of phase transfer catalysis and microwave irradiation. The resulting derivatives of N-doped graphene were analysed showing that the bandgap of the material varied depending on the alkylation agent used. es_ES
dc.description.sponsorship Financial support from MINECO (Spain) (CTQ2013-48252-P and CTQ2012-32315), Junta de Comunidades de Castilla-La Mancha (PEII-2014-014-P) and Generalidad Valenciana (Prometeo 13/19) is gratefully acknowledged. M.B. thanks the MINECO for a doctoral FPI grant. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Covalent functionalization of N-doped graphene by N-alkylation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5cc06285c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-48252-P/ES/NANOESTRUCTURAS DE CARBONO Y SISTEMAS PI-CONJUGADOS PARA APLICACIONES EN ELECTRONICA MOLECULAR Y FOTOVOLTAICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PEII-2014-014-P/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F019/ES/HUMBACE: HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Barrejon, M.; Primo Arnau, AM.; Gomez-Escalonilla, M.; Fierro, JLG.; García Gómez, H.; Langa, F. (2015). Covalent functionalization of N-doped graphene by N-alkylation. Chemical Communications. 51(95):16916-16919. https://doi.org/10.1039/c5cc06285c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c5cc06285c es_ES
dc.description.upvformatpinicio 16916 es_ES
dc.description.upvformatpfin 16919 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 95 es_ES
dc.relation.pasarela S\305109 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 es_ES
dc.description.references Rodríguez-Pérez, L., Herranz, M. Á., & Martín, N. (2013). The chemistry of pristine graphene. Chemical Communications, 49(36), 3721. doi:10.1039/c3cc38950b es_ES
dc.description.references Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t es_ES
dc.description.references Lee, W. J., Maiti, U. N., Lee, J. M., Lim, J., Han, T. H., & Kim, S. O. (2014). Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 50(52), 6818. doi:10.1039/c4cc00146j es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Wang, X., Sun, G., Routh, P., Kim, D.-H., Huang, W., & Chen, P. (2014). Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 43(20), 7067-7098. doi:10.1039/c4cs00141a es_ES
dc.description.references Wu, M., Cao, C., & Jiang, J. Z. (2010). Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology, 21(50), 505202. doi:10.1088/0957-4484/21/50/505202 es_ES
dc.description.references Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b es_ES
dc.description.references Latorre-Sánchez, M., Primo, A., Atienzar, P., Forneli, A., & García, H. (2014). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small, 11(8), 970-975. doi:10.1002/smll.201402278 es_ES
dc.description.references Gupta, M., Gaur, N., Kumar, P., Singh, S., Jaiswal, N. K., & Kondekar, P. N. (2015). Tailoring the electronic properties of a Z-shaped graphene field effect transistor via B/N doping. Physics Letters A, 379(7), 710-718. doi:10.1016/j.physleta.2014.12.046 es_ES
dc.description.references Kim, H. S., Kim, H. S., Kim, S. S., & Kim, Y.-H. (2014). Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene. Nanoscale, 6(24), 14911-14918. doi:10.1039/c4nr05024j es_ES
dc.description.references Shirakawa, S., & Maruoka, K. (2013). Recent Developments in Asymmetric Phase-Transfer Reactions. Angewandte Chemie International Edition, 52(16), 4312-4348. doi:10.1002/anie.201206835 es_ES
dc.description.references Langa, F., & la Cruz, P. (2007). Microwave Irradiation: An Important Tool to Functionalize Fullerenes and Carbon Nanotubes. Combinatorial Chemistry & High Throughput Screening, 10(9), 766-782. doi:10.2174/138620707783018487 es_ES
dc.description.references Langa, F., de la Cruz, P., Espı́ldora, E., Garcı́a, J. J., Pérez, M. C., & de la Hoz, A. (2000). Fullerene chemistry under microwave irradiation. Carbon, 38(11-12), 1641-1646. doi:10.1016/s0008-6223(99)00284-5 es_ES
dc.description.references Kappe, C. O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43(46), 6250-6284. doi:10.1002/anie.200400655 es_ES
dc.description.references Keglevich, G., Grün, A., & Bálint, E. (2013). Microwave Irradiation and Phase Transfer Catalysis in C-, O- and N-Alkylation Reactions. Current Organic Synthesis, 10(5), 751-763. doi:10.2174/1570179411310050006 es_ES
dc.description.references Ni, Z. H., Ponomarenko, L. A., Nair, R. R., Yang, R., Anissimova, S., Grigorieva, I. V., … Geim, A. K. (2010). On Resonant Scatterers As a Factor Limiting Carrier Mobility in Graphene. Nano Letters, 10(10), 3868-3872. doi:10.1021/nl101399r es_ES
dc.description.references Chang, C.-K., Kataria, S., Kuo, C.-C., Ganguly, A., Wang, B.-Y., Hwang, J.-Y., … Chen, K.-H. (2013). Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping. ACS Nano, 7(2), 1333-1341. doi:10.1021/nn3049158 es_ES
dc.description.references Cuong, T. V., Pham, V. H., Tran, Q. T., Hahn, S. H., Chung, J. S., Shin, E. W., & Kim, E. J. (2010). Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Materials Letters, 64(3), 399-401. doi:10.1016/j.matlet.2009.11.029 es_ES
dc.description.references Koh, Y. K., Bae, M.-H., Cahill, D. G., & Pop, E. (2010). Reliably Counting Atomic Planes of Few-Layer Graphene (n > 4). ACS Nano, 5(1), 269-274. doi:10.1021/nn102658a es_ES
dc.description.references Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., … Kong, J. (2009). Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 9(1), 30-35. doi:10.1021/nl801827v es_ES
dc.description.references Pan, C.-T., Hinks, J. A., Ramasse, Q. M., Greaves, G., Bangert, U., Donnelly, S. E., & Haigh, S. J. (2014). In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene. Scientific Reports, 4(1). doi:10.1038/srep06334 es_ES
dc.description.references Lu, Y.-F., Lo, S.-T., Lin, J.-C., Zhang, W., Lu, J.-Y., Liu, F.-H., … Li, L.-J. (2013). Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano, 7(8), 6522-6532. doi:10.1021/nn402102y es_ES
dc.description.references Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b), 15(2), 627-637. doi:10.1002/pssb.19660150224 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem