- -

Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations

Mostrar el registro completo del ítem

Gomez-Aix, M.; Pascual Bañuls, L.; Cañizares Sales, J.; Sanchez-Pina, A.; Aranda, M. (2016). Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations. BMC Genomics. 17(429). https://doi.org/10.1186/s12864-016-2772-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140201

Ficheros en el ítem

Metadatos del ítem

Título: Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations
Autor: Gomez-Aix, M Pascual Bañuls, Laura Cañizares Sales, Joaquín Sanchez-Pina, A Aranda, M
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Background: Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that ...[+]
Palabras clave: MNSV , CMV , Cucurbits , Cytokinin-O-glucosyltransferase , Resistance , WMV
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Genomics. (issn: 1471-2164 )
DOI: 10.1186/s12864-016-2772-5
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12864-016-2772-5
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2012-37390/ES/IDENTIFICACION DE FACTORES DE SUSCEPTIBILIDAD AL VIRUS DEL MOSAICO DEL PEPINO DULCE (PEPMV) EN TOMATE PARA SU POSIBLE USO COMO DIANAS DE MEJORA DE RESISTENCIAS/
info:eu-repo/grantAgreement/MINECO//PCIN-2013-043/ES/UNA COMBINACION DE APROXIMACIONES DE BIOLOGIA DE SISTEMAS Y DE EXPERIMENTOS DE ALTO RENDIMIENTO PARA CONSEGUIR RESISTENCIA DURADERA FRENTE A VIRUS DE PLANTAS EN CULTIVOS/
Agradecimientos:
This work was supported by grants AGL2012-37390 and PCIN-2013-043 (Ministerio de Economia y Competitividad, Spain)
Tipo: Artículo

References

Maule A, Leh V, Lederer C. The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol. 2002;5(4):279–84.

Pallás V, Garcia JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol. 2011;92(Pt 12):2691–705.

Wang D, Maule AJ. Inhibition of host gene expression associated with plant virus replication. Science. 1995;267(5195):229–31. [+]
Maule A, Leh V, Lederer C. The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol. 2002;5(4):279–84.

Pallás V, Garcia JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol. 2011;92(Pt 12):2691–705.

Wang D, Maule AJ. Inhibition of host gene expression associated with plant virus replication. Science. 1995;267(5195):229–31.

Aranda MA, Escaler M, Wang D, Maule AJ. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A. 1996;93(26):15289–93.

Whitham SA, Yang CL, Goodin MM. Global impact: Elucidating plant responses to viral infection. Mol Plant Microbe Interact. 2006;19(11):1207–15.

Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, et al. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics. 2011;12:252.

González-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, et al. MELOGEN: an EST database for melon functional genomics. BMC Genomics. 2007;8:306.

Dahmani-Mardas F, Troadec C, Boualem A, Leveque S, Alsadon AA, Aldoss AA, et al. Engineering melon plants with improved fruit shelf life using the TILLING approach. Plos One. 2010;5(12):e15776.

González M, Xu M, Esteras C, Roig C, Monforte AJ, Troadec C, et al. Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes. 2011;4:289.

García MJ. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7.

Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, González-Ibeas D, et al. An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics. 2009;10:467.

González-Ibeas D, Canizares J, Aranda MA. Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant Microbe Interact. 2012;25(1):107–18.

Roig C, Fita A, Rios G, Hammond JP, Nuez F, Pico B. Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics. 2012;13:601.

Riviere CJ, Rochon DM. Nucleotide-Sequence and genomic organization of melon necrotic spot virus. J Gen Virol. 1990;71:1887–96.

Genovés A, Navarro JA, Pallás V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J Gen Virol. 2006;87(Pt 8):2371–80.

Ohki T, Akita F, Mochizuki T, Kanda A, Sasaya T, Tsuda S. The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology. 2010;402(1):129–34.

Navarro JA, Genovés A, Climent J, Sauri A, Martinez-Gil L, Mingarro I, et al. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology. 2006;356(1-2):57–67.

Gómez-Aix C, García-García M, Aranda MA, Sánchez-Pina MA. Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Mol Plant Microbe Interact. 2015;28(4):387–97.

Miras M, Sempere RN, Kraft JJ, Miller WA, Aranda MA, Truniger V. Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. New Phytologist. 2014;202(1):233–46.

Truniger V, Nieto C, Gonzalez-Ibeas D, Aranda M. Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J. 2008;56(5):716–27.

Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 2006;48(3):452–62.

Nieto C, Rodriguez-Moreno L, Rodriguez-Hernandez AM, Aranda MA, Truniger V. Nicotiana benthamiana resistance to non-adapted Melon necrotic spot virus results from an incompatible interaction between virus RNA and translation initiation factor 4E. Plant J. 2011;66(3):492–501.

Díaz JA, Nieto C, Moriones E, Truniger V, Aranda MA. Molecular characterization of a Melon necrotic spot virus strain that overcomes the resistance in melon and nonhost plants. Mol Plant Microbe Interact. 2004;17(6):668–75.

Conesa A, Nueda MJ, Ferrer A, Talon M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006;22(9):1096–102.

Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863–8.

Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response (vol 98, pg 5116, 2001). Proc Natl Acad Sci U S A. 2001;98(18):10515.

Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, et al. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 2003;33(2):271–83.

Hillung J, Cuevas JM, Elena SF. Transcript Profiling of Different Arabidopsis thaliana Ecotypes in Response to Tobacco etch potyvirus Infection. Front Microbiol. 2012;3:229.

Yang CL, Guo R, Jie F, Nettleton D, Peng JQ, Carr T, et al. Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol Plant Microbe Interact. 2007;20(4):358–70.

Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, et al. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J. 2008;5:92.

Hanssen IM, van Esse HP, Ballester AR, Hogewoning SW, Parra NO, Paeleman A, et al. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol. 2011;156(1):301–18.

Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA. Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol. 2007;45:329–69.

Miller WA, White KA. Long-distance RNA-RNA interactions in plant virus gene expression and replication. Annu Rev Phytopathol. 2006;44:447–67.

Díaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, Garcia JA, Martinez-Gomez P, et al. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot. 2008;59(8):2147–60.

Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 2007;51(6):941–54.

Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology. 2002;295(2):307–19.

Shabala S, Babourina O, Rengel Z, Nemchinov LG. Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. Planta. 2010;232(4):807–15.

Coudriet DL, Kishaba AN, Bohn GW. Inheritance of resistance to muskmelon. J Am Soc Hortic Sci. 1981;106:789–91.

Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol. 2015;16:529–540.

Takabatake R, Ando Y, Seo S, Katou S, Tsuda S, Ohashi Y, et al. MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. Plant Cell Physiol. 2007;48(3):498–510.

Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol. 2011;14(5):519–29.

Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A. 2001;98(2):741–6.

Yang C, Zhang C, Dittman JD, Whitham SA. Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology. 2009;390(2):163–73.

Aranda MA, Escaler M, Thomas CL, Maule AJ. A heat shock transcription factor in pea is differentially controlled by heat and virus replication. Plant J. 1999;20(2):153–61.

Igari K, Endo S, Hibara K, Aida M, Sakakibara H, Kawasaki T, et al. Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J. 2008;55(1):14–27.

Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88.

Postnikova OA, Nemchinov LG. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol J. 2012;9:101.

Rodrigo G, Carrera J, Ruiz-Ferrer V, del Toro FJ, Llave C, Voinnet O, et al. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. Plos One. 2012;7(7):e40526.

Rizzo TM, Palukaitis P. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 1. J Gen Virol. 1989;70(Pt 1):1–11.

Díaz-Pendón JA, Fernández-Muñoz R, Gómez-Guillamon ML, Moriones E. Inheritance of Resistance to Watermelon mosaic virus in Cucumis melo that Impairs Virus Accumulation, Symptom Expression, and Aphid Transmission. Phytopathology. 2005;95(7):840–6.

Saladié M, Cañizares J, Phillips MA, Rodríguez-Concepción M, Larrigaudiere C, Gibon Y, et al. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics. 2015;16:440.

Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7. doi: 10.1093/bioinformatics/btq431 .

Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93.

Graur D, Li WH. Fundamentals of Molecular Evolution. 2nd ed. Sunderland: Sinauer Associates; 2000. p. 209–10.

Soukas A, Cohen P, Socci ND, Friedman JM. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 2000;14(8):963–80.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem