- -

Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomez-Aix, M es_ES
dc.contributor.author Pascual Bañuls, Laura es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Sanchez-Pina, A es_ES
dc.contributor.author Aranda, M es_ES
dc.date.accessioned 2020-04-06T08:56:09Z
dc.date.available 2020-04-06T08:56:09Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1471-2164 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140201
dc.description.abstract [EN] Background: Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3'-untranslated regions. Results: Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Ma5 or MNSV-Ma5/3'264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Ma5 and MNSV-Ma5/3'264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Ma5/3'264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Ma5/3'264 with respect to MNSV-Ma5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Ma5/3'264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Ma5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. Conclusions: Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways. es_ES
dc.description.sponsorship This work was supported by grants AGL2012-37390 and PCIN-2013-043 (Ministerio de Economia y Competitividad, Spain) es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MNSV es_ES
dc.subject CMV es_ES
dc.subject Cucurbits es_ES
dc.subject Cytokinin-O-glucosyltransferase es_ES
dc.subject Resistance es_ES
dc.subject WMV es_ES
dc.subject.classification GENETICA es_ES
dc.title Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12864-016-2772-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-37390/ES/IDENTIFICACION DE FACTORES DE SUSCEPTIBILIDAD AL VIRUS DEL MOSAICO DEL PEPINO DULCE (PEPMV) EN TOMATE PARA SU POSIBLE USO COMO DIANAS DE MEJORA DE RESISTENCIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PCIN-2013-043/ES/UNA COMBINACION DE APROXIMACIONES DE BIOLOGIA DE SISTEMAS Y DE EXPERIMENTOS DE ALTO RENDIMIENTO PARA CONSEGUIR RESISTENCIA DURADERA FRENTE A VIRUS DE PLANTAS EN CULTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Gomez-Aix, M.; Pascual Bañuls, L.; Cañizares Sales, J.; Sanchez-Pina, A.; Aranda, M. (2016). Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations. BMC Genomics. 17(429). https://doi.org/10.1186/s12864-016-2772-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12864-016-2772-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 429 es_ES
dc.relation.pasarela S\319953 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Maule A, Leh V, Lederer C. The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol. 2002;5(4):279–84. es_ES
dc.description.references Pallás V, Garcia JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol. 2011;92(Pt 12):2691–705. es_ES
dc.description.references Wang D, Maule AJ. Inhibition of host gene expression associated with plant virus replication. Science. 1995;267(5195):229–31. es_ES
dc.description.references Aranda MA, Escaler M, Wang D, Maule AJ. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A. 1996;93(26):15289–93. es_ES
dc.description.references Whitham SA, Yang CL, Goodin MM. Global impact: Elucidating plant responses to viral infection. Mol Plant Microbe Interact. 2006;19(11):1207–15. es_ES
dc.description.references Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, et al. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics. 2011;12:252. es_ES
dc.description.references González-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, et al. MELOGEN: an EST database for melon functional genomics. BMC Genomics. 2007;8:306. es_ES
dc.description.references Dahmani-Mardas F, Troadec C, Boualem A, Leveque S, Alsadon AA, Aldoss AA, et al. Engineering melon plants with improved fruit shelf life using the TILLING approach. Plos One. 2010;5(12):e15776. es_ES
dc.description.references González M, Xu M, Esteras C, Roig C, Monforte AJ, Troadec C, et al. Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Res Notes. 2011;4:289. es_ES
dc.description.references García MJ. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7. es_ES
dc.description.references Mascarell-Creus A, Cañizares J, Vilarrasa-Blasi J, Mora-García S, Blanca J, González-Ibeas D, et al. An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics. 2009;10:467. es_ES
dc.description.references González-Ibeas D, Canizares J, Aranda MA. Microarray analysis shows that recessive resistance to Watermelon mosaic virus in melon is associated with the induction of defense response genes. Mol Plant Microbe Interact. 2012;25(1):107–18. es_ES
dc.description.references Roig C, Fita A, Rios G, Hammond JP, Nuez F, Pico B. Root transcriptional responses of two melon genotypes with contrasting resistance to Monosporascus cannonballus (Pollack et Uecker) infection. BMC Genomics. 2012;13:601. es_ES
dc.description.references Riviere CJ, Rochon DM. Nucleotide-Sequence and genomic organization of melon necrotic spot virus. J Gen Virol. 1990;71:1887–96. es_ES
dc.description.references Genovés A, Navarro JA, Pallás V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J Gen Virol. 2006;87(Pt 8):2371–80. es_ES
dc.description.references Ohki T, Akita F, Mochizuki T, Kanda A, Sasaya T, Tsuda S. The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology. 2010;402(1):129–34. es_ES
dc.description.references Navarro JA, Genovés A, Climent J, Sauri A, Martinez-Gil L, Mingarro I, et al. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology. 2006;356(1-2):57–67. es_ES
dc.description.references Gómez-Aix C, García-García M, Aranda MA, Sánchez-Pina MA. Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Mol Plant Microbe Interact. 2015;28(4):387–97. es_ES
dc.description.references Miras M, Sempere RN, Kraft JJ, Miller WA, Aranda MA, Truniger V. Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. New Phytologist. 2014;202(1):233–46. es_ES
dc.description.references Truniger V, Nieto C, Gonzalez-Ibeas D, Aranda M. Mechanism of plant eIF4E-mediated resistance against a Carmovirus (Tombusviridae): cap-independent translation of a viral RNA controlled in cis by an (a)virulence determinant. Plant J. 2008;56(5):716–27. es_ES
dc.description.references Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 2006;48(3):452–62. es_ES
dc.description.references Nieto C, Rodriguez-Moreno L, Rodriguez-Hernandez AM, Aranda MA, Truniger V. Nicotiana benthamiana resistance to non-adapted Melon necrotic spot virus results from an incompatible interaction between virus RNA and translation initiation factor 4E. Plant J. 2011;66(3):492–501. es_ES
dc.description.references Díaz JA, Nieto C, Moriones E, Truniger V, Aranda MA. Molecular characterization of a Melon necrotic spot virus strain that overcomes the resistance in melon and nonhost plants. Mol Plant Microbe Interact. 2004;17(6):668–75. es_ES
dc.description.references Conesa A, Nueda MJ, Ferrer A, Talon M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006;22(9):1096–102. es_ES
dc.description.references Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832. es_ES
dc.description.references Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863–8. es_ES
dc.description.references Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response (vol 98, pg 5116, 2001). Proc Natl Acad Sci U S A. 2001;98(18):10515. es_ES
dc.description.references Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, et al. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 2003;33(2):271–83. es_ES
dc.description.references Hillung J, Cuevas JM, Elena SF. Transcript Profiling of Different Arabidopsis thaliana Ecotypes in Response to Tobacco etch potyvirus Infection. Front Microbiol. 2012;3:229. es_ES
dc.description.references Yang CL, Guo R, Jie F, Nettleton D, Peng JQ, Carr T, et al. Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol Plant Microbe Interact. 2007;20(4):358–70. es_ES
dc.description.references Agudelo-Romero P, Carbonell P, de la Iglesia F, Carrera J, Rodrigo G, Jaramillo A, et al. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J. 2008;5:92. es_ES
dc.description.references Hanssen IM, van Esse HP, Ballester AR, Hogewoning SW, Parra NO, Paeleman A, et al. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol. 2011;156(1):301–18. es_ES
dc.description.references Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA. Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol. 2007;45:329–69. es_ES
dc.description.references Miller WA, White KA. Long-distance RNA-RNA interactions in plant virus gene expression and replication. Annu Rev Phytopathol. 2006;44:447–67. es_ES
dc.description.references Díaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, Garcia JA, Martinez-Gomez P, et al. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot. 2008;59(8):2147–60. es_ES
dc.description.references Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 2007;51(6):941–54. es_ES
dc.description.references Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology. 2002;295(2):307–19. es_ES
dc.description.references Shabala S, Babourina O, Rengel Z, Nemchinov LG. Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. Planta. 2010;232(4):807–15. es_ES
dc.description.references Coudriet DL, Kishaba AN, Bohn GW. Inheritance of resistance to muskmelon. J Am Soc Hortic Sci. 1981;106:789–91. es_ES
dc.description.references Alazem M, Lin NS. Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol. 2015;16:529–540. es_ES
dc.description.references Takabatake R, Ando Y, Seo S, Katou S, Tsuda S, Ohashi Y, et al. MAP kinases function downstream of HSP90 and upstream of mitochondria in TMV resistance gene N-mediated hypersensitive cell death. Plant Cell Physiol. 2007;48(3):498–510. es_ES
dc.description.references Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol. 2011;14(5):519–29. es_ES
dc.description.references Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A. 2001;98(2):741–6. es_ES
dc.description.references Yang C, Zhang C, Dittman JD, Whitham SA. Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology. 2009;390(2):163–73. es_ES
dc.description.references Aranda MA, Escaler M, Thomas CL, Maule AJ. A heat shock transcription factor in pea is differentially controlled by heat and virus replication. Plant J. 1999;20(2):153–61. es_ES
dc.description.references Igari K, Endo S, Hibara K, Aida M, Sakakibara H, Kawasaki T, et al. Constitutive activation of a CC-NB-LRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J. 2008;55(1):14–27. es_ES
dc.description.references Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69(4):473–88. es_ES
dc.description.references Postnikova OA, Nemchinov LG. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol J. 2012;9:101. es_ES
dc.description.references Rodrigo G, Carrera J, Ruiz-Ferrer V, del Toro FJ, Llave C, Voinnet O, et al. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. Plos One. 2012;7(7):e40526. es_ES
dc.description.references Rizzo TM, Palukaitis P. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus (CMV) strains: CMV RNA 1. J Gen Virol. 1989;70(Pt 1):1–11. es_ES
dc.description.references Díaz-Pendón JA, Fernández-Muñoz R, Gómez-Guillamon ML, Moriones E. Inheritance of Resistance to Watermelon mosaic virus in Cucumis melo that Impairs Virus Accumulation, Symptom Expression, and Aphid Transmission. Phytopathology. 2005;95(7):840–6. es_ES
dc.description.references Saladié M, Cañizares J, Phillips MA, Rodríguez-Concepción M, Larrigaudiere C, Gibon Y, et al. Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics. 2015;16:440. es_ES
dc.description.references Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7. doi: 10.1093/bioinformatics/btq431 . es_ES
dc.description.references Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93. es_ES
dc.description.references Graur D, Li WH. Fundamentals of Molecular Evolution. 2nd ed. Sunderland: Sinauer Associates; 2000. p. 209–10. es_ES
dc.description.references Soukas A, Cohen P, Socci ND, Friedman JM. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 2000;14(8):963–80. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem