- -

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

Show simple item record

Files in this item

dc.contributor.author Sabek, Jad es_ES
dc.contributor.author Díaz-Fernández, Francisco Javier es_ES
dc.contributor.author Torrijos-Morán, Luis es_ES
dc.contributor.author Díaz-Betancor, Zeneida es_ES
dc.contributor.author Maquieira Catala, Angel es_ES
dc.contributor.author Bañuls Polo, María-José es_ES
dc.contributor.author Pinilla-Cienfuegos, Elena es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-04-06T08:56:23Z
dc.date.available 2020-04-06T08:56:23Z
dc.date.issued 2019-04-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140210
dc.description.abstract [EN] A photonic bandgap (PBG) biosensor has been developed for the label-free detection of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the cladding and the target analytes, scanning near-field optical microscopy has been used to characterize the profile of that evanescent field. The study confirms the strong exponential decrease of the signal as it goes into the cladding. This means that biorecognition events must occur as close to the PBG structure surface as possible in order to obtain the maximum sensing response. Within this context, the PBG biosensor has been biofunctionalized with half-antibodies specific to bovine serum albumin (BSA) using a UV-induced immobilization procedure. The use of half-antibodies allows one to reduce the thickness of the biorecognition volume down to ca. 2.5 nm, thus leading to a higher interaction with the evanescent field, as well as a proper orientation of their binding sites towards the target sample. Then, the biofunctionalized PBG biosensor has been used to perform a direct and real-time detection of the target BSA antigen. es_ES
dc.description.sponsorship This research was funded by the European Commission through the Horizon 2020 Programme (PHC-634013-PHOCNOSIS project) and by the Spanish Ministry of Economy and Competitiveness (TEC2015-63838-C3-1-R-OPTONANOSENS project and FJCI-2015-27228 grant). es_ES
dc.language Inglés es_ES
dc.publisher Beilstein-Institut es_ES
dc.relation.ispartof Beilstein Journal of Nanotechnology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Evanescent field es_ES
dc.subject Half-antibodies es_ES
dc.subject Light-assisted immobilization es_ES
dc.subject Photonic bandgap sensor es_ES
dc.subject SNOM characterization es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3762/bjnano.10.97 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2015-27228/ES/FJCI-2015-27228/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Sabek, J.; Díaz-Fernández, FJ.; Torrijos-Morán, L.; Díaz-Betancor, Z.; Maquieira Catala, A.; Bañuls Polo, M.; Pinilla-Cienfuegos, E.... (2019). Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures. Beilstein Journal of Nanotechnology. 10:967-974. https://doi.org/10.3762/bjnano.10.97 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3762/bjnano.10.97 es_ES
dc.description.upvformatpinicio 967 es_ES
dc.description.upvformatpfin 974 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 2190-4286 es_ES
dc.relation.pasarela S\384629 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934 es_ES
dc.description.references Qavi, A. J., Washburn, A. L., Byeon, J.-Y., & Bailey, R. C. (2009). Label-free technologies for quantitative multiparameter biological analysis. Analytical and Bioanalytical Chemistry, 394(1), 121-135. doi:10.1007/s00216-009-2637-8 es_ES
dc.description.references Luan, E., Shoman, H., Ratner, D., Cheung, K., & Chrostowski, L. (2018). Silicon Photonic Biosensors Using Label-Free Detection. Sensors, 18(10), 3519. doi:10.3390/s18103519 es_ES
dc.description.references Washburn, A. L., & Bailey, R. C. (2011). Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. The Analyst, 136(2), 227-236. doi:10.1039/c0an00449a es_ES
dc.description.references Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510 es_ES
dc.description.references Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 es_ES
dc.description.references Baker, J. E., Sriram, R., & Miller, B. L. (2015). Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab on a Chip, 15(4), 971-990. doi:10.1039/c4lc01208a es_ES
dc.description.references Phaner-Goutorbe, M., Dugas, V., Chevolot, Y., & Souteyrand, E. (2011). Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study. Materials Science and Engineering: C, 31(2), 384-390. doi:10.1016/j.msec.2010.10.016 es_ES
dc.description.references Díaz-Fernández, F. J., Pinilla-Cienfuegos, E., García-Meca, C., Lechago, S., Griol, A., & Martí, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics, 13(2), 72-76. doi:10.1049/iet-opt.2018.5071 es_ES


This item appears in the following Collection(s)

Show simple item record