Mostrar el registro sencillo del ítem
dc.contributor.author | Sabek, Jad | es_ES |
dc.contributor.author | Díaz-Fernández, Francisco Javier | es_ES |
dc.contributor.author | Torrijos-Morán, Luis | es_ES |
dc.contributor.author | Díaz-Betancor, Zeneida | es_ES |
dc.contributor.author | Maquieira Catala, Angel | es_ES |
dc.contributor.author | Bañuls Polo, María-José | es_ES |
dc.contributor.author | Pinilla-Cienfuegos, Elena | es_ES |
dc.contributor.author | García-Rupérez, Jaime | es_ES |
dc.date.accessioned | 2020-04-06T08:56:23Z | |
dc.date.available | 2020-04-06T08:56:23Z | |
dc.date.issued | 2019-04-26 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140210 | |
dc.description.abstract | [EN] A photonic bandgap (PBG) biosensor has been developed for the label-free detection of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the cladding and the target analytes, scanning near-field optical microscopy has been used to characterize the profile of that evanescent field. The study confirms the strong exponential decrease of the signal as it goes into the cladding. This means that biorecognition events must occur as close to the PBG structure surface as possible in order to obtain the maximum sensing response. Within this context, the PBG biosensor has been biofunctionalized with half-antibodies specific to bovine serum albumin (BSA) using a UV-induced immobilization procedure. The use of half-antibodies allows one to reduce the thickness of the biorecognition volume down to ca. 2.5 nm, thus leading to a higher interaction with the evanescent field, as well as a proper orientation of their binding sites towards the target sample. Then, the biofunctionalized PBG biosensor has been used to perform a direct and real-time detection of the target BSA antigen. | es_ES |
dc.description.sponsorship | This research was funded by the European Commission through the Horizon 2020 Programme (PHC-634013-PHOCNOSIS project) and by the Spanish Ministry of Economy and Competitiveness (TEC2015-63838-C3-1-R-OPTONANOSENS project and FJCI-2015-27228 grant). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Beilstein-Institut | es_ES |
dc.relation.ispartof | Beilstein Journal of Nanotechnology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Evanescent field | es_ES |
dc.subject | Half-antibodies | es_ES |
dc.subject | Light-assisted immobilization | es_ES |
dc.subject | Photonic bandgap sensor | es_ES |
dc.subject | SNOM characterization | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3762/bjnano.10.97 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FJCI-2015-27228/ES/FJCI-2015-27228/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Sabek, J.; Díaz-Fernández, FJ.; Torrijos-Morán, L.; Díaz-Betancor, Z.; Maquieira Catala, A.; Bañuls Polo, M.; Pinilla-Cienfuegos, E.... (2019). Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures. Beilstein Journal of Nanotechnology. 10:967-974. https://doi.org/10.3762/bjnano.10.97 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3762/bjnano.10.97 | es_ES |
dc.description.upvformatpinicio | 967 | es_ES |
dc.description.upvformatpfin | 974 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 2190-4286 | es_ES |
dc.relation.pasarela | S\384629 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934 | es_ES |
dc.description.references | Qavi, A. J., Washburn, A. L., Byeon, J.-Y., & Bailey, R. C. (2009). Label-free technologies for quantitative multiparameter biological analysis. Analytical and Bioanalytical Chemistry, 394(1), 121-135. doi:10.1007/s00216-009-2637-8 | es_ES |
dc.description.references | Luan, E., Shoman, H., Ratner, D., Cheung, K., & Chrostowski, L. (2018). Silicon Photonic Biosensors Using Label-Free Detection. Sensors, 18(10), 3519. doi:10.3390/s18103519 | es_ES |
dc.description.references | Washburn, A. L., & Bailey, R. C. (2011). Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. The Analyst, 136(2), 227-236. doi:10.1039/c0an00449a | es_ES |
dc.description.references | Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510 | es_ES |
dc.description.references | Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 | es_ES |
dc.description.references | Baker, J. E., Sriram, R., & Miller, B. L. (2015). Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab on a Chip, 15(4), 971-990. doi:10.1039/c4lc01208a | es_ES |
dc.description.references | Phaner-Goutorbe, M., Dugas, V., Chevolot, Y., & Souteyrand, E. (2011). Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study. Materials Science and Engineering: C, 31(2), 384-390. doi:10.1016/j.msec.2010.10.016 | es_ES |
dc.description.references | Díaz-Fernández, F. J., Pinilla-Cienfuegos, E., García-Meca, C., Lechago, S., Griol, A., & Martí, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics, 13(2), 72-76. doi:10.1049/iet-opt.2018.5071 | es_ES |