- -

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

Mostrar el registro completo del ítem

Sabek, J.; Díaz-Fernández, FJ.; Torrijos-Morán, L.; Díaz-Betancor, Z.; Maquieira Catala, A.; Bañuls Polo, M.; Pinilla-Cienfuegos, E.... (2019). Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures. Beilstein Journal of Nanotechnology. 10:967-974. https://doi.org/10.3762/bjnano.10.97

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140210

Ficheros en el ítem

Metadatos del ítem

Título: Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures
Autor: Sabek, Jad Díaz-Fernández, Francisco Javier Torrijos-Morán, Luis Díaz-Betancor, Zeneida Maquieira Catala, Angel Bañuls Polo, María-José Pinilla-Cienfuegos, Elena García-Rupérez, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Fecha difusión:
Resumen:
[EN] A photonic bandgap (PBG) biosensor has been developed for the label-free detection of proteins. As the sensing in this type of structures is governed by the interaction between the evanescent field going into the ...[+]
Palabras clave: Evanescent field , Half-antibodies , Light-assisted immobilization , Photonic bandgap sensor , SNOM characterization
Derechos de uso: Reconocimiento (by)
Fuente:
Beilstein Journal of Nanotechnology. (eissn: 2190-4286 )
DOI: 10.3762/bjnano.10.97
Editorial:
Beilstein-Institut
Versión del editor: https://doi.org/10.3762/bjnano.10.97
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/
info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/
info:eu-repo/grantAgreement/MINECO//FJCI-2015-27228/ES/FJCI-2015-27228/
Agradecimientos:
This research was funded by the European Commission through the Horizon 2020 Programme (PHC-634013-PHOCNOSIS project) and by the Spanish Ministry of Economy and Competitiveness (TEC2015-63838-C3-1-R-OPTONANOSENS project ...[+]
Tipo: Artículo

References

Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934

Qavi, A. J., Washburn, A. L., Byeon, J.-Y., & Bailey, R. C. (2009). Label-free technologies for quantitative multiparameter biological analysis. Analytical and Bioanalytical Chemistry, 394(1), 121-135. doi:10.1007/s00216-009-2637-8

Luan, E., Shoman, H., Ratner, D., Cheung, K., & Chrostowski, L. (2018). Silicon Photonic Biosensors Using Label-Free Detection. Sensors, 18(10), 3519. doi:10.3390/s18103519 [+]
Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934

Qavi, A. J., Washburn, A. L., Byeon, J.-Y., & Bailey, R. C. (2009). Label-free technologies for quantitative multiparameter biological analysis. Analytical and Bioanalytical Chemistry, 394(1), 121-135. doi:10.1007/s00216-009-2637-8

Luan, E., Shoman, H., Ratner, D., Cheung, K., & Chrostowski, L. (2018). Silicon Photonic Biosensors Using Label-Free Detection. Sensors, 18(10), 3519. doi:10.3390/s18103519

Washburn, A. L., & Bailey, R. C. (2011). Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. The Analyst, 136(2), 227-236. doi:10.1039/c0an00449a

Iqbal, M., Gleeson, M. A., Spaugh, B., Tybor, F., Gunn, W. G., Hochberg, M., … Gunn, L. C. (2010). Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation. IEEE Journal of Selected Topics in Quantum Electronics, 16(3), 654-661. doi:10.1109/jstqe.2009.2032510

Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162

Baker, J. E., Sriram, R., & Miller, B. L. (2015). Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab on a Chip, 15(4), 971-990. doi:10.1039/c4lc01208a

Phaner-Goutorbe, M., Dugas, V., Chevolot, Y., & Souteyrand, E. (2011). Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study. Materials Science and Engineering: C, 31(2), 384-390. doi:10.1016/j.msec.2010.10.016

Díaz-Fernández, F. J., Pinilla-Cienfuegos, E., García-Meca, C., Lechago, S., Griol, A., & Martí, J. (2019). Characterisation of on-chip wireless interconnects based on silicon nanoantennas via near-field scanning optical microscopy. IET Optoelectronics, 13(2), 72-76. doi:10.1049/iet-opt.2018.5071

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem