- -

Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation

Show full item record

Bader, P.; Blanes Zamora, S.; Casas, F. (2019). Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation. Mathematics. 7(12):1-19. https://doi.org/10.3390/math7121174

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140219

Files in this item

Item Metadata

Title: Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation
Author: Bader, Philipp Blanes Zamora, Sergio Casas, Fernando
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] A new way to compute the Taylor polynomial of a matrix exponential is presented which reduces the number of matrix multiplications in comparison with the de-facto standard Paterson-Stockmeyer method for polynomial ...[+]
Subjects: Exponential of a matrix , Scaling and squaring , Matrix polynomials
Copyrigths: Reconocimiento (by)
Source:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math7121174
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/math7121174
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/
Thanks:
This work was funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). P.B. was additionally supported by a contract within the Program Juan de la Cierva Formacion ...[+]
Type: Artículo

References

Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P., & Zanna, A. (2000). Lie-group methods. Acta Numerica, 9, 215-365. doi:10.1017/s0962492900002154

Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001

Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07 [+]
Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P., & Zanna, A. (2000). Lie-group methods. Acta Numerica, 9, 215-365. doi:10.1017/s0962492900002154

Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001

Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07

Celledoni, E., Marthinsen, A., & Owren, B. (2003). Commutator-free Lie group methods. Future Generation Computer Systems, 19(3), 341-352. doi:10.1016/s0167-739x(02)00161-9

Crouch, P. E., & Grossman, R. (1993). Numerical integration of ordinary differential equations on manifolds. Journal of Nonlinear Science, 3(1), 1-33. doi:10.1007/bf02429858

Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048

Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017

Sidje, R. B. (1998). Expokit. ACM Transactions on Mathematical Software, 24(1), 130-156. doi:10.1145/285861.285868

Higham, N. J., & Al-Mohy, A. H. (2010). Computing matrix functions. Acta Numerica, 19, 159-208. doi:10.1017/s0962492910000036

Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007

Ruiz, P., Sastre, J., Ibáñez, J., & Defez, E. (2016). High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 291, 370-379. doi:10.1016/j.cam.2015.04.001

Sastre, J., Ibán͂ez, J., Defez, E., & Ruiz, P. (2015). New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential. SIAM Journal on Scientific Computing, 37(1), A439-A455. doi:10.1137/090763202

Sastre, J. (2018). Efficient evaluation of matrix polynomials. Linear Algebra and its Applications, 539, 229-250. doi:10.1016/j.laa.2017.11.010

Westreich, D. (1989). Evaluating the matrix polynomial I+A+. . .+A/sup N-1/. IEEE Transactions on Circuits and Systems, 36(1), 162-164. doi:10.1109/31.16591

An Efficient Alternative to the Function Expm of Matlab for the Computation of the Exponential of a Matrix http://www.gicas.uji.es/Research/MatrixExp.html

Kenney, C. S., & Laub, A. J. (1998). A Schur--Fréchet Algorithm for Computing the Logarithm and Exponential of a Matrix. SIAM Journal on Matrix Analysis and Applications, 19(3), 640-663. doi:10.1137/s0895479896300334

Dieci, L., & Papini, A. (2000). Padé approximation for the exponential of a block triangular matrix. Linear Algebra and its Applications, 308(1-3), 183-202. doi:10.1016/s0024-3795(00)00042-2

Higham, N. J., & Tisseur, F. (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM Journal on Matrix Analysis and Applications, 21(4), 1185-1201. doi:10.1137/s0895479899356080

Celledoni, E., & Iserles, A. (2000). Approximating the exponential from a Lie algebra to a Lie group. Mathematics of Computation, 69(232), 1457-1481. doi:10.1090/s0025-5718-00-01223-0

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record