- -

Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bader, Philipp es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas, Fernando es_ES
dc.date.accessioned 2020-04-06T08:56:40Z
dc.date.available 2020-04-06T08:56:40Z
dc.date.issued 2019-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140219
dc.description.abstract [EN] A new way to compute the Taylor polynomial of a matrix exponential is presented which reduces the number of matrix multiplications in comparison with the de-facto standard Paterson-Stockmeyer method for polynomial evaluation. Combined with the scaling and squaring procedure, this reduction is sufficient to make the Taylor method superior in performance to Pade approximants over a range of values of the matrix norms. An efficient adjustment to make the method robust against overscaling is also introduced. Numerical experiments show the superior performance of our method to have a similar accuracy in comparison with state-of-the-art implementations, and thus, it is especially recommended to be used in conjunction with Lie-group and exponential integrators where preservation of geometric properties is at issue. es_ES
dc.description.sponsorship This work was funded by Ministerio de Economia, Industria y Competitividad (Spain) through project MTM2016-77660-P (AEI/FEDER, UE). P.B. was additionally supported by a contract within the Program Juan de la Cierva Formacion (Spain). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Exponential of a matrix es_ES
dc.subject Scaling and squaring es_ES
dc.subject Matrix polynomials es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math7121174 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-77660-P/ES/NUEVOS RETOS EN INTEGRACION NUMERICA: FUNDAMENTOS ALGEBRAICOS, METODOS DE ESCISION, METODOS DE MONTECARLO Y OTRAS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bader, P.; Blanes Zamora, S.; Casas, F. (2019). Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation. Mathematics. 7(12):1-19. https://doi.org/10.3390/math7121174 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math7121174 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\402247 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P., & Zanna, A. (2000). Lie-group methods. Acta Numerica, 9, 215-365. doi:10.1017/s0962492900002154 es_ES
dc.description.references Blanes, S., Casas, F., Oteo, J. A., & Ros, J. (2009). The Magnus expansion and some of its applications. Physics Reports, 470(5-6), 151-238. doi:10.1016/j.physrep.2008.11.001 es_ES
dc.description.references Casas, F., & Iserles, A. (2006). Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General, 39(19), 5445-5461. doi:10.1088/0305-4470/39/19/s07 es_ES
dc.description.references Celledoni, E., Marthinsen, A., & Owren, B. (2003). Commutator-free Lie group methods. Future Generation Computer Systems, 19(3), 341-352. doi:10.1016/s0167-739x(02)00161-9 es_ES
dc.description.references Crouch, P. E., & Grossman, R. (1993). Numerical integration of ordinary differential equations on manifolds. Journal of Nonlinear Science, 3(1), 1-33. doi:10.1007/bf02429858 es_ES
dc.description.references Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. Acta Numerica, 19, 209-286. doi:10.1017/s0962492910000048 es_ES
dc.description.references Najfeld, I., & Havel, T. F. (1995). Derivatives of the Matrix Exponential and Their Computation. Advances in Applied Mathematics, 16(3), 321-375. doi:10.1006/aama.1995.1017 es_ES
dc.description.references Sidje, R. B. (1998). Expokit. ACM Transactions on Mathematical Software, 24(1), 130-156. doi:10.1145/285861.285868 es_ES
dc.description.references Higham, N. J., & Al-Mohy, A. H. (2010). Computing matrix functions. Acta Numerica, 19, 159-208. doi:10.1017/s0962492910000036 es_ES
dc.description.references Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007 es_ES
dc.description.references Ruiz, P., Sastre, J., Ibáñez, J., & Defez, E. (2016). High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 291, 370-379. doi:10.1016/j.cam.2015.04.001 es_ES
dc.description.references Sastre, J., Ibán͂ez, J., Defez, E., & Ruiz, P. (2015). New Scaling-Squaring Taylor Algorithms for Computing the Matrix Exponential. SIAM Journal on Scientific Computing, 37(1), A439-A455. doi:10.1137/090763202 es_ES
dc.description.references Sastre, J. (2018). Efficient evaluation of matrix polynomials. Linear Algebra and its Applications, 539, 229-250. doi:10.1016/j.laa.2017.11.010 es_ES
dc.description.references Westreich, D. (1989). Evaluating the matrix polynomial I+A+. . .+A/sup N-1/. IEEE Transactions on Circuits and Systems, 36(1), 162-164. doi:10.1109/31.16591 es_ES
dc.description.references An Efficient Alternative to the Function Expm of Matlab for the Computation of the Exponential of a Matrix http://www.gicas.uji.es/Research/MatrixExp.html es_ES
dc.description.references Kenney, C. S., & Laub, A. J. (1998). A Schur--Fréchet Algorithm for Computing the Logarithm and Exponential of a Matrix. SIAM Journal on Matrix Analysis and Applications, 19(3), 640-663. doi:10.1137/s0895479896300334 es_ES
dc.description.references Dieci, L., & Papini, A. (2000). Padé approximation for the exponential of a block triangular matrix. Linear Algebra and its Applications, 308(1-3), 183-202. doi:10.1016/s0024-3795(00)00042-2 es_ES
dc.description.references Higham, N. J., & Tisseur, F. (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM Journal on Matrix Analysis and Applications, 21(4), 1185-1201. doi:10.1137/s0895479899356080 es_ES
dc.description.references Celledoni, E., & Iserles, A. (2000). Approximating the exponential from a Lie algebra to a Lie group. Mathematics of Computation, 69(232), 1457-1481. doi:10.1090/s0025-5718-00-01223-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem