Kamm, B. (2007). Production of Platform Chemicals and Synthesis Gas from Biomass. Angewandte Chemie International Edition, 46(27), 5056-5058. doi:10.1002/anie.200604514
Kamm, B. (2007). Produktion von Plattformchemikalien und Synthesegas aus Biomasse. Angewandte Chemie, 119(27), 5146-5149. doi:10.1002/ange.200604514
Hu, X., & Li, C.-Z. (2011). Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chemistry, 13(7), 1676. doi:10.1039/c1gc15272f
[+]
Kamm, B. (2007). Production of Platform Chemicals and Synthesis Gas from Biomass. Angewandte Chemie International Edition, 46(27), 5056-5058. doi:10.1002/anie.200604514
Kamm, B. (2007). Produktion von Plattformchemikalien und Synthesegas aus Biomasse. Angewandte Chemie, 119(27), 5146-5149. doi:10.1002/ange.200604514
Hu, X., & Li, C.-Z. (2011). Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chemistry, 13(7), 1676. doi:10.1039/c1gc15272f
Anastas, P. T., Bartlett, L. B., Kirchhoff, M. M., & Williamson, T. C. (2000). The role of catalysis in the design, development, and implementation of green chemistry. Catalysis Today, 55(1-2), 11-22. doi:10.1016/s0920-5861(99)00222-9
Podolean, I., Kuncser, V., Gheorghe, N., Macovei, D., Parvulescu, V. I., & Coman, S. M. (2013). Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chemistry, 15(11), 3077. doi:10.1039/c3gc41120f
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Mallat, T., Brönnimann, C., & Baiker, A. (1997). Modification of supported Pt catalysts by preadsorbed phosphines: enhanced selectivity in the oxidation ofl-sorbose. Applied Catalysis A: General, 149(1), 103-112. doi:10.1016/s0926-860x(96)00252-9
Smith, A. B., & Scarborough, R. M. (1980). Ruthenium Tetroxide Oxidation of Simple Ethers: A Systematic Study. Synthetic Communications, 10(3), 205-211. doi:10.1080/00397918008064223
Arceo, E., Ellman, J. A., & Bergman, R. G. (2010). Rhenium-Catalyzed Didehydroxylation of Vicinal Diols to Alkenes Using a Simple Alcohol as a Reducing Agent. Journal of the American Chemical Society, 132(33), 11408-11409. doi:10.1021/ja103436v
Fellay, Cã©., Dyson, P., & Laurenczy, Gã¡. (2008). A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. Angewandte Chemie International Edition, 47(21), 3966-3968. doi:10.1002/anie.200800320
Fellay, C., Dyson, P. J., & Laurenczy, G. (2008). A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. Angewandte Chemie, 120(21), 4030-4032. doi:10.1002/ange.200800320
Dowson, G. R. M., Haddow, M. F., Lee, J., Wingad, R. L., & Wass, D. F. (2013). Catalytic Conversion of Ethanol into an Advanced Biofuel: Unprecedented Selectivity forn-Butanol. Angewandte Chemie International Edition, 52(34), 9005-9008. doi:10.1002/anie.201303723
Dowson, G. R. M., Haddow, M. F., Lee, J., Wingad, R. L., & Wass, D. F. (2013). Catalytic Conversion of Ethanol into an Advanced Biofuel: Unprecedented Selectivity forn-Butanol. Angewandte Chemie, 125(34), 9175-9178. doi:10.1002/ange.201303723
Hamid, M. H. S. A., Allen, C. L., Lamb, G. W., Maxwell, A. C., Maytum, H. C., Watson, A. J. A., & Williams, J. M. J. (2009). Ruthenium-CatalyzedN-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology. Journal of the American Chemical Society, 131(5), 1766-1774. doi:10.1021/ja807323a
Imamura, S. (1999). Catalytic and Noncatalytic Wet Oxidation. Industrial & Engineering Chemistry Research, 38(5), 1743-1753. doi:10.1021/ie980576l
[-]