Mostrar el registro sencillo del ítem
dc.contributor.author | Podolean, Iunia | es_ES |
dc.contributor.author | Rizescu, Cristina | es_ES |
dc.contributor.author | Bala, Camelia | es_ES |
dc.contributor.author | Rotariu, Lucian | es_ES |
dc.contributor.author | Parvulescu, Vasile I. | es_ES |
dc.contributor.author | Coman, Simona M. | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2020-04-06T08:56:41Z | |
dc.date.available | 2020-04-06T08:56:41Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 1864-5631 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140220 | |
dc.description.abstract | [EN] A new pathway for the catalytic wet oxidation (CWO) of glucose is described. Employing a cationic Ru@MNP catalyst, succinic acid is obtained in unprecedently high yield (87.5%) for a >99.9% conversion of glucose, most probably through a free radical mechanism combined with catalytic didehydroxylation of vicinal diols and hydrogenation of the resulted unsaturated intermediate. | es_ES |
dc.description.sponsorship | The work was supported by the strategic grant POSDRU/159/1.5/S/137750, Project "Postdoctoral programme for training scientific researchers" co-financed by the European Social Foundation within the Sectorial Operational Program Human Resources Development 2007-2013. Prof. Simona Coman kindly acknowledges UEFISCDI for financial support (project PN-II-PT-PCCA-2013-4-1090, Nr. 44/2014). Also, we thank Prof. Curt Reimann for critical reading and helpful suggestions related to manuscript preparation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemSusChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biomass conversion | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Oxidation | es_ES |
dc.subject | Ruthenium | es_ES |
dc.subject | Succinic acid | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of n-Butylamine to a Ru-III Catalyst | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cssc.201600474 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UEFISCDI//PN-II-PT-PCCA-2013-4-1090 44%2F2014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ESF//POSDRU%2F159%2F1.5%2FS%2F137750/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Podolean, I.; Rizescu, C.; Bala, C.; Rotariu, L.; Parvulescu, VI.; Coman, SM.; García Gómez, H. (2016). Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of n-Butylamine to a Ru-III Catalyst. ChemSusChem. 9(17):2307-2311. https://doi.org/10.1002/cssc.201600474 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cssc.201600474 | es_ES |
dc.description.upvformatpinicio | 2307 | es_ES |
dc.description.upvformatpfin | 2311 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 17 | es_ES |
dc.relation.pasarela | S\328522 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía | es_ES |
dc.description.references | Kamm, B. (2007). Production of Platform Chemicals and Synthesis Gas from Biomass. Angewandte Chemie International Edition, 46(27), 5056-5058. doi:10.1002/anie.200604514 | es_ES |
dc.description.references | Kamm, B. (2007). Produktion von Plattformchemikalien und Synthesegas aus Biomasse. Angewandte Chemie, 119(27), 5146-5149. doi:10.1002/ange.200604514 | es_ES |
dc.description.references | Hu, X., & Li, C.-Z. (2011). Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery. Green Chemistry, 13(7), 1676. doi:10.1039/c1gc15272f | es_ES |
dc.description.references | Anastas, P. T., Bartlett, L. B., Kirchhoff, M. M., & Williamson, T. C. (2000). The role of catalysis in the design, development, and implementation of green chemistry. Catalysis Today, 55(1-2), 11-22. doi:10.1016/s0920-5861(99)00222-9 | es_ES |
dc.description.references | Podolean, I., Kuncser, V., Gheorghe, N., Macovei, D., Parvulescu, V. I., & Coman, S. M. (2013). Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chemistry, 15(11), 3077. doi:10.1039/c3gc41120f | es_ES |
dc.description.references | Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d | es_ES |
dc.description.references | Mallat, T., Brönnimann, C., & Baiker, A. (1997). Modification of supported Pt catalysts by preadsorbed phosphines: enhanced selectivity in the oxidation ofl-sorbose. Applied Catalysis A: General, 149(1), 103-112. doi:10.1016/s0926-860x(96)00252-9 | es_ES |
dc.description.references | Smith, A. B., & Scarborough, R. M. (1980). Ruthenium Tetroxide Oxidation of Simple Ethers: A Systematic Study. Synthetic Communications, 10(3), 205-211. doi:10.1080/00397918008064223 | es_ES |
dc.description.references | Arceo, E., Ellman, J. A., & Bergman, R. G. (2010). Rhenium-Catalyzed Didehydroxylation of Vicinal Diols to Alkenes Using a Simple Alcohol as a Reducing Agent. Journal of the American Chemical Society, 132(33), 11408-11409. doi:10.1021/ja103436v | es_ES |
dc.description.references | Fellay, Cã©., Dyson, P., & Laurenczy, Gã¡. (2008). A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. Angewandte Chemie International Edition, 47(21), 3966-3968. doi:10.1002/anie.200800320 | es_ES |
dc.description.references | Fellay, C., Dyson, P. J., & Laurenczy, G. (2008). A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst. Angewandte Chemie, 120(21), 4030-4032. doi:10.1002/ange.200800320 | es_ES |
dc.description.references | Dowson, G. R. M., Haddow, M. F., Lee, J., Wingad, R. L., & Wass, D. F. (2013). Catalytic Conversion of Ethanol into an Advanced Biofuel: Unprecedented Selectivity forn-Butanol. Angewandte Chemie International Edition, 52(34), 9005-9008. doi:10.1002/anie.201303723 | es_ES |
dc.description.references | Dowson, G. R. M., Haddow, M. F., Lee, J., Wingad, R. L., & Wass, D. F. (2013). Catalytic Conversion of Ethanol into an Advanced Biofuel: Unprecedented Selectivity forn-Butanol. Angewandte Chemie, 125(34), 9175-9178. doi:10.1002/ange.201303723 | es_ES |
dc.description.references | Hamid, M. H. S. A., Allen, C. L., Lamb, G. W., Maxwell, A. C., Maytum, H. C., Watson, A. J. A., & Williams, J. M. J. (2009). Ruthenium-CatalyzedN-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology. Journal of the American Chemical Society, 131(5), 1766-1774. doi:10.1021/ja807323a | es_ES |
dc.description.references | Imamura, S. (1999). Catalytic and Noncatalytic Wet Oxidation. Industrial & Engineering Chemistry Research, 38(5), 1743-1753. doi:10.1021/ie980576l | es_ES |