World Population Prospects: the 2017 Revision, Key Findings and Advance Tables. Report, United Nations, Department of Economic and Social Affairs, Population Divisionhttps://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf
The Economic Consequences of Ageing Populations. Report 138, European Economy. Economic Papershttp://ec.europa.eu/economyfinance/publications/pages/publication11151en.pdf
World Alzheimer’s Report 2015: The Global Impact of Dementia, an Analysis of Prevalence, Incidence, Cost and Trends. Technical Report, Alzheimer’s Disease Internationalhttps://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
[+]
World Population Prospects: the 2017 Revision, Key Findings and Advance Tables. Report, United Nations, Department of Economic and Social Affairs, Population Divisionhttps://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf
The Economic Consequences of Ageing Populations. Report 138, European Economy. Economic Papershttp://ec.europa.eu/economyfinance/publications/pages/publication11151en.pdf
World Alzheimer’s Report 2015: The Global Impact of Dementia, an Analysis of Prevalence, Incidence, Cost and Trends. Technical Report, Alzheimer’s Disease Internationalhttps://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf
Smith, D., Lovell, J., Weller, C., Kennedy, B., Winbolt, M., Young, C., & Ibrahim, J. (2017). A systematic review of medication non-adherence in persons with dementia or cognitive impairment. PLOS ONE, 12(2), e0170651. doi:10.1371/journal.pone.0170651
From Care in Homes to Care at Home: European Experiences with (De)institutionalisation in Long-Term Care. Technical Report, European Centre for Social Welfare Policy and Researchhttps://www.euro.centre.org/downloads/detail/1540usg=AOvVaw09RDY4Um6Pz4aqzQuQxvfA
Rising Need for Elder Care in Europe Necessitates; New Paradigm for Elder Caregiving Training: A Landscape Analysis. Technical Report, European Institute of Innovation and Technologyhttps://www.kcsc.org.uk/sites/kcsc.org.uk/files/documents/Transformation/Events/CARE%20Landscape%20Analysis%20-%20EIT%20Format.pdf
Kim, S. (2015). Cognitive rehabilitation for elderly people with early-stage Alzheimer’s disease. Journal of Physical Therapy Science, 27(2), 543-546. doi:10.1589/jpts.27.543
Foster, L., & Walker, A. (2014). Active and Successful Aging: A European Policy Perspective. The Gerontologist, 55(1), 83-90. doi:10.1093/geront/gnu028
Marsillas, S., De Donder, L., Kardol, T., van Regenmortel, S., Dury, S., Brosens, D., … Varela, J. (2017). Does active ageing contribute to life satisfaction for older people? Testing a new model of active ageing. European Journal of Ageing, 14(3), 295-310. doi:10.1007/s10433-017-0413-8
Improving Later Life. Understanding the Oldest Old. Technical Report, Age UK, 2013https://www.ageuk.org.uk/globalassets/age-uk/documents/reports-and-publications/reports-and-briefings/health–wellbeing/rb_feb13_understanding_the_oldest_old_improving_later_life.pdf
Buddyhttps://buddytherobot.com
InTouch Healthhttps://www.intouchhealth.com/
Sanbot Nanohttp://en.sanbot.com
Pepperhttps://www.softbankrobotics.com/emea/en/pepper
Costa, A., Martinez-Martin, E., Cazorla, M., & Julian, V. (2018). PHAROS—PHysical Assistant RObot System. Sensors, 18(8), 2633. doi:10.3390/s18082633
Costa, A., Novais, P., Julian, V., & Nalepa, G. J. (2018). Cognitive assistants. International Journal of Human-Computer Studies, 117, 1-3. doi:10.1016/j.ijhcs.2018.05.008
Chang, C., Hinze, A., Bowen, J., Gilbert, L., & Starkey, N. (2018). Mymemory: A mobile memory assistant for people with traumatic brain injury. International Journal of Human-Computer Studies, 117, 4-19. doi:10.1016/j.ijhcs.2018.02.006
Nakamura, M. (2018). Virtual Care Giver: Virtual Agent for Personalized Home Elderly Care. Impact, 2018(11), 31-33. doi:10.21820/23987073.2018.11.31
Shaked, N. A. (2017). Avatars and virtual agents – relationship interfaces for the elderly. Healthcare Technology Letters, 4(3), 83-87. doi:10.1049/htl.2017.0009
Nalepa, G. J., Kutt, K., & Bobek, S. (2019). Mobile platform for affective context-aware systems. Future Generation Computer Systems, 92, 490-503. doi:10.1016/j.future.2018.02.033
Krause, A., Smailagic, A., & Siewiorek, D. P. (2006). Context-aware mobile computing: learning context- dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing, 5(2), 113-127. doi:10.1109/tmc.2006.18
Kuchar, D. L., Thorburn, C. W., & Sammel, N. L. (1987). Prediction of serious arrhythmic events after myocardial infarction: Signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography. Journal of the American College of Cardiology, 9(3), 531-538. doi:10.1016/s0735-1097(87)80045-1
Veyrier, J., Maille, B., Dognin, N., Martinez, E., Tovmassian, L., Simoni, A. S., … Deharo, J. C. (2019). A real life study, analyzing clinical and economic performance of prolonged Holter Monitoring after a cryptogenic stroke. Archives of Cardiovascular Diseases Supplements, 11(1), 85. doi:10.1016/j.acvdsp.2018.10.187
empaticahttps://www.empatica.com/en-eu/
Shoval, N., Schvimer, Y., & Tamir, M. (2017). Real-Time Measurement of Tourists’ Objective and Subjective Emotions in Time and Space. Journal of Travel Research, 57(1), 3-16. doi:10.1177/0047287517691155
Electrocardiogram Standard Limb Leads (Bipolar)https://www.cvphysiology.com/Arrhythmias/A013a
AD8232https://www.analog.com/en/products/ad8232.html#
Bluetoothhttps://www.bluetooth.com/specifications/gatt/services
M5Stackhttps://m5stack.com
ESP-32https://www.espressif.com/en/products/hardware/esp32/overview
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59. doi:10.1016/0005-7916(94)90063-9
Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., … Patras, I. (2012). DEAP: A Database for Emotion Analysis ;Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1), 18-31. doi:10.1109/t-affc.2011.15
Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175-1191. doi:10.1109/34.954607
Ahlstrom, M. L., & Tompkins, W. J. (1985). Digital Filters for Real-Time ECG Signal Processing Using Microprocessors. IEEE Transactions on Biomedical Engineering, BME-32(9), 708-713. doi:10.1109/tbme.1985.325589
Drake, J. D. M., & Callaghan, J. P. (2006). Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques. Journal of Electromyography and Kinesiology, 16(2), 175-187. doi:10.1016/j.jelekin.2005.07.003
Nacke, L. E., Nacke, A., & Lindley, C. A. (2009). Brain Training for Silver Gamers: Effects of Age and Game Form on Effectiveness, Efficiency, Self-Assessment, and Gameplay Experience. CyberPsychology & Behavior, 12(5), 493-499. doi:10.1089/cpb.2009.0013
Ertel, K. A., Glymour, M. M., & Berkman, L. F. (2008). Effects of Social Integration on Preserving Memory Function in a Nationally Representative US Elderly Population. American Journal of Public Health, 98(7), 1215-1220. doi:10.2105/ajph.2007.113654
Costa, A., Rincon, J. A., Carrascosa, C., Julian, V., & Novais, P. (2019). Emotions detection on an ambient intelligent system using wearable devices. Future Generation Computer Systems, 92, 479-489. doi:10.1016/j.future.2018.03.038
NHS choices—Exercises for Older Peoplehttps://www.nhs.uk/Tools/Documents/NHSExercisesForOlderPeople.pdf
[-]