- -

EMERALD- Exercise Monitoring Emotional Assistant

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

EMERALD- Exercise Monitoring Emotional Assistant

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rincon, J.A. es_ES
dc.contributor.author Araujo, Angelo es_ES
dc.contributor.author Carrascosa Casamayor, Carlos es_ES
dc.contributor.author Novais, Paulo es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.date.accessioned 2020-04-06T08:56:56Z
dc.date.available 2020-04-06T08:56:56Z
dc.date.issued 2019-04-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140227
dc.description.abstract [EN] The increase in the elderly population in today's society entails the need for new policies to maintain an adequate level of care without excessively increasing social spending. One of the possible options is to promote home care for the elderly. In this sense, this paper introduces a personal assistant designed to help elderly people in their activities of daily living. This system, called EMERALD, is comprised of a sensing platform and different mechanisms for emotion detection and decision-making that combined produces a cognitive assistant that engages users in Active Aging. The contribution of the paper is twofoldon the one hand, the integration of low-cost sensors that among other characteristics allows for detecting the emotional state of the user at an affordable cost; on the other hand, an automatic activity suggestion module that engages the users, mainly oriented to the elderly, in a healthy lifestyle. Moreover, by continuously correcting the system using the on-line monitoring carried out through the sensors integrated in the system, the system is personalized, and, in broad terms, emotionally intelligent. A functional prototype is being currently tested in a daycare centre in the northern area of Portugal where preliminary tests show positive results. es_ES
dc.description.sponsorship This research was partially funded by the Fundacao para a Ciencia e Tecnologia (FCT) within the projects UID/CEC/00319/2019 and Post-Doc Grant SFRH/BPD/102696/2014 (Angelo Costa). This work is also partially funded by the MINECO/FEDER TIN2015-65515-C4-1-R and RISEWISE (RISE Women with disabilities In Social Engagement) EU project under Agreement No. 690874. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cognitive assistant es_ES
dc.subject Wearable es_ES
dc.subject Emotion detection es_ES
dc.subject Signal processing es_ES
dc.subject Elderly well-being es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title EMERALD- Exercise Monitoring Emotional Assistant es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19081953 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147280/PT/ALGORITMI Research Centre/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/690874/EU/RISEWISE -RISE Women with disabilities In Social Engagement/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F102696%2F2014/PT/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Rincon, J.; Araujo, A.; Carrascosa Casamayor, C.; Novais, P.; Julian Inglada, VJ. (2019). EMERALD- Exercise Monitoring Emotional Assistant. Sensors. 19(8):1-21. https://doi.org/10.3390/s19081953 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19081953 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\387006 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references World Population Prospects: the 2017 Revision, Key Findings and Advance Tables. Report, United Nations, Department of Economic and Social Affairs, Population Divisionhttps://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf es_ES
dc.description.references The Economic Consequences of Ageing Populations. Report 138, European Economy. Economic Papershttp://ec.europa.eu/economyfinance/publications/pages/publication11151en.pdf es_ES
dc.description.references World Alzheimer’s Report 2015: The Global Impact of Dementia, an Analysis of Prevalence, Incidence, Cost and Trends. Technical Report, Alzheimer’s Disease Internationalhttps://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf es_ES
dc.description.references Smith, D., Lovell, J., Weller, C., Kennedy, B., Winbolt, M., Young, C., & Ibrahim, J. (2017). A systematic review of medication non-adherence in persons with dementia or cognitive impairment. PLOS ONE, 12(2), e0170651. doi:10.1371/journal.pone.0170651 es_ES
dc.description.references From Care in Homes to Care at Home: European Experiences with (De)institutionalisation in Long-Term Care. Technical Report, European Centre for Social Welfare Policy and Researchhttps://www.euro.centre.org/downloads/detail/1540usg=AOvVaw09RDY4Um6Pz4aqzQuQxvfA es_ES
dc.description.references Rising Need for Elder Care in Europe Necessitates; New Paradigm for Elder Caregiving Training: A Landscape Analysis. Technical Report, European Institute of Innovation and Technologyhttps://www.kcsc.org.uk/sites/kcsc.org.uk/files/documents/Transformation/Events/CARE%20Landscape%20Analysis%20-%20EIT%20Format.pdf es_ES
dc.description.references Kim, S. (2015). Cognitive rehabilitation for elderly people with early-stage Alzheimer’s disease. Journal of Physical Therapy Science, 27(2), 543-546. doi:10.1589/jpts.27.543 es_ES
dc.description.references Foster, L., & Walker, A. (2014). Active and Successful Aging: A European Policy Perspective. The Gerontologist, 55(1), 83-90. doi:10.1093/geront/gnu028 es_ES
dc.description.references Marsillas, S., De Donder, L., Kardol, T., van Regenmortel, S., Dury, S., Brosens, D., … Varela, J. (2017). Does active ageing contribute to life satisfaction for older people? Testing a new model of active ageing. European Journal of Ageing, 14(3), 295-310. doi:10.1007/s10433-017-0413-8 es_ES
dc.description.references Improving Later Life. Understanding the Oldest Old. Technical Report, Age UK, 2013https://www.ageuk.org.uk/globalassets/age-uk/documents/reports-and-publications/reports-and-briefings/health–wellbeing/rb_feb13_understanding_the_oldest_old_improving_later_life.pdf es_ES
dc.description.references Buddyhttps://buddytherobot.com es_ES
dc.description.references InTouch Healthhttps://www.intouchhealth.com/ es_ES
dc.description.references Sanbot Nanohttp://en.sanbot.com es_ES
dc.description.references Pepperhttps://www.softbankrobotics.com/emea/en/pepper es_ES
dc.description.references Costa, A., Martinez-Martin, E., Cazorla, M., & Julian, V. (2018). PHAROS—PHysical Assistant RObot System. Sensors, 18(8), 2633. doi:10.3390/s18082633 es_ES
dc.description.references Costa, A., Novais, P., Julian, V., & Nalepa, G. J. (2018). Cognitive assistants. International Journal of Human-Computer Studies, 117, 1-3. doi:10.1016/j.ijhcs.2018.05.008 es_ES
dc.description.references Chang, C., Hinze, A., Bowen, J., Gilbert, L., & Starkey, N. (2018). Mymemory: A mobile memory assistant for people with traumatic brain injury. International Journal of Human-Computer Studies, 117, 4-19. doi:10.1016/j.ijhcs.2018.02.006 es_ES
dc.description.references Nakamura, M. (2018). Virtual Care Giver: Virtual Agent for Personalized Home Elderly Care. Impact, 2018(11), 31-33. doi:10.21820/23987073.2018.11.31 es_ES
dc.description.references Shaked, N. A. (2017). Avatars and virtual agents – relationship interfaces for the elderly. Healthcare Technology Letters, 4(3), 83-87. doi:10.1049/htl.2017.0009 es_ES
dc.description.references Nalepa, G. J., Kutt, K., & Bobek, S. (2019). Mobile platform for affective context-aware systems. Future Generation Computer Systems, 92, 490-503. doi:10.1016/j.future.2018.02.033 es_ES
dc.description.references Krause, A., Smailagic, A., & Siewiorek, D. P. (2006). Context-aware mobile computing: learning context- dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing, 5(2), 113-127. doi:10.1109/tmc.2006.18 es_ES
dc.description.references Kuchar, D. L., Thorburn, C. W., & Sammel, N. L. (1987). Prediction of serious arrhythmic events after myocardial infarction: Signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography. Journal of the American College of Cardiology, 9(3), 531-538. doi:10.1016/s0735-1097(87)80045-1 es_ES
dc.description.references Veyrier, J., Maille, B., Dognin, N., Martinez, E., Tovmassian, L., Simoni, A. S., … Deharo, J. C. (2019). A real life study, analyzing clinical and economic performance of prolonged Holter Monitoring after a cryptogenic stroke. Archives of Cardiovascular Diseases Supplements, 11(1), 85. doi:10.1016/j.acvdsp.2018.10.187 es_ES
dc.description.references empaticahttps://www.empatica.com/en-eu/ es_ES
dc.description.references Shoval, N., Schvimer, Y., & Tamir, M. (2017). Real-Time Measurement of Tourists’ Objective and Subjective Emotions in Time and Space. Journal of Travel Research, 57(1), 3-16. doi:10.1177/0047287517691155 es_ES
dc.description.references Electrocardiogram Standard Limb Leads (Bipolar)https://www.cvphysiology.com/Arrhythmias/A013a es_ES
dc.description.references AD8232https://www.analog.com/en/products/ad8232.html# es_ES
dc.description.references Bluetoothhttps://www.bluetooth.com/specifications/gatt/services es_ES
dc.description.references M5Stackhttps://m5stack.com es_ES
dc.description.references ESP-32https://www.espressif.com/en/products/hardware/esp32/overview es_ES
dc.description.references Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59. doi:10.1016/0005-7916(94)90063-9 es_ES
dc.description.references Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., … Patras, I. (2012). DEAP: A Database for Emotion Analysis ;Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1), 18-31. doi:10.1109/t-affc.2011.15 es_ES
dc.description.references Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1175-1191. doi:10.1109/34.954607 es_ES
dc.description.references Ahlstrom, M. L., & Tompkins, W. J. (1985). Digital Filters for Real-Time ECG Signal Processing Using Microprocessors. IEEE Transactions on Biomedical Engineering, BME-32(9), 708-713. doi:10.1109/tbme.1985.325589 es_ES
dc.description.references Drake, J. D. M., & Callaghan, J. P. (2006). Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques. Journal of Electromyography and Kinesiology, 16(2), 175-187. doi:10.1016/j.jelekin.2005.07.003 es_ES
dc.description.references Nacke, L. E., Nacke, A., & Lindley, C. A. (2009). Brain Training for Silver Gamers: Effects of Age and Game Form on Effectiveness, Efficiency, Self-Assessment, and Gameplay Experience. CyberPsychology & Behavior, 12(5), 493-499. doi:10.1089/cpb.2009.0013 es_ES
dc.description.references Ertel, K. A., Glymour, M. M., & Berkman, L. F. (2008). Effects of Social Integration on Preserving Memory Function in a Nationally Representative US Elderly Population. American Journal of Public Health, 98(7), 1215-1220. doi:10.2105/ajph.2007.113654 es_ES
dc.description.references Costa, A., Rincon, J. A., Carrascosa, C., Julian, V., & Novais, P. (2019). Emotions detection on an ambient intelligent system using wearable devices. Future Generation Computer Systems, 92, 479-489. doi:10.1016/j.future.2018.03.038 es_ES
dc.description.references NHS choices—Exercises for Older Peoplehttps://www.nhs.uk/Tools/Documents/NHSExercisesForOlderPeople.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem