- -

An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene

Mostrar el registro completo del ítem

Trandafir, MM.; Pop, L.; Hadade, ND.; Florea, M.; Neatu, F.; Teodorescu, CM.; Duraki, B.... (2016). An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene. Catalysis Science & Technology. 6(23):8344-8354. https://doi.org/10.1039/c6cy01631f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140229

Ficheros en el ítem

Metadatos del ítem

Título: An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene
Autor: Trandafir, M. M. Pop, L. Hadade, N. D. Florea, M. Neatu, F. Teodorescu, C. M. Duraki, B. van Bokhoven, J. A. Grosu, I. Parvulescu, Vasile I. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A bimodal (micro/mesoporous) COF was synthesized by coupling tetrakis-1,3,5,7-(4'-iodophenyl) adamantane with 4,4'-diethynylbiphenyl following a Sonogashira protocol. The COF preparation strategy led, however, to the ...[+]
Derechos de uso: Cerrado
Fuente:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c6cy01631f
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c6cy01631f
Código del Proyecto:
info:eu-repo/grantAgreement/ESF//POSDRU%2F187%2F1.5%2FS%2F155559/
info:eu-repo/grantAgreement/UEFISCDI//PCCA-II-166%2F2012/
info:eu-repo/grantAgreement/UEFISCDI//PCCA-II-56%2F2014/
info:eu-repo/grantAgreement/UEFISCDI//PN-II-ID-PCE-2011-3-0060/
info:eu-repo/grantAgreement/UEFISCDI//PN2-128%2F2011/
Agradecimientos:
This work was supported by a grant from the Romanian National Authority for Scientific Research, CNDI-UEFISCDI (project numbers PCCA-II-166/2012, PCCA-II-56/2014, and PN-II-ID-PCE-2011-3-0060). M. M. T. was supported by ...[+]
Tipo: Artículo

References

G. Busca , Chapter 7 - Zeolites and Other Structurally Microporous Solids as Acid–Base Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 197–249

G. Busca , Chapter 9 - Metal Catalysts for Hydrogenations and Dehydrogenations, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 297–343

G. Busca , Chapter 8 - Other Solid Acid and Basic Catalytic Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 251–296 [+]
G. Busca , Chapter 7 - Zeolites and Other Structurally Microporous Solids as Acid–Base Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 197–249

G. Busca , Chapter 9 - Metal Catalysts for Hydrogenations and Dehydrogenations, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 297–343

G. Busca , Chapter 8 - Other Solid Acid and Basic Catalytic Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 251–296

Front Matter A2 - GuidoBusca, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, p. iii

Cote, A. P. (2005). Porous, Crystalline, Covalent Organic Frameworks. Science, 310(5751), 1166-1170. doi:10.1126/science.1120411

El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O’Keeffe, M., & Yaghi, O. M. (2007). Designed Synthesis of 3D Covalent Organic Frameworks. Science, 316(5822), 268-272. doi:10.1126/science.1139915

G. Busca , Chapter 1 - Heterogeneous Catalysts, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 1–7

G. Busca , Chapter 2 - Preparation of Solid Catalysts: A Short Summary, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 9–22

G. Busca , Chapter 3 - Characterization of Real Catalytic Materials: An Overview, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 23–35

G. Busca , Chapter 6 - Metal Oxides as Acid–Base Catalytic Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 103–195

G. Busca , Chapter 4 - Practical Application and Testing of Catalytic Materials: A Synthesis, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 37–56

G. Busca , Chapter 5 - Acid and Basic Catalysts: Fundamentals, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 57–101

Copyright A2 - GuidoBusca, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, p. iv

G. Busca , Chapter 10 - Catalysts for Hydrogenations, Dehydrogenations and Metathesis: Sulfides and Oxides, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 345–374

S. Nishimura , Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley-Interscience, New York, 2001

Bing, Y., Neburchilov, V., Song, C., Baker, R., Guest, A., Ghosh, D., … Zhang, J. (2012). Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. Electrochimica Acta, 77, 225-231. doi:10.1016/j.electacta.2012.05.100

Goubert-Renaudin, S. N. S., & Wieckowski, A. (2011). Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. Journal of Electroanalytical Chemistry, 652(1-2), 44-51. doi:10.1016/j.jelechem.2010.11.022

Liu, Y., Ishihara, A., Mitsushima, S., Kamiya, N., & Ota, K. (2005). Zirconium Oxide for PEFC Cathodes. Electrochemical and Solid-State Letters, 8(8), A400. doi:10.1149/1.1943550

Liu, Y., Ishihara, A., Mitsushima, S., & Ota, K. (2010). Influence of sputtering power on oxygen reduction reaction activity of zirconium oxides prepared by radio frequency reactive sputtering. Electrochimica Acta, 55(3), 1239-1244. doi:10.1016/j.electacta.2009.10.042

G. Busca , Reduction of Aromatic Nitroalkenes with Baker's Yeast Chapter 2 - Preparation of Solid Catalysts: A Short Summary, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 9–22

G. Busca , Chapter 11 - Oxidation Catalysts, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 375–419

M. Loos , Chapter 1 - Nanoscience and Nanotechnology, in Carbon Nanotube Reinforced Composites, ed. M. Loos, William Andrew Publishing, Oxford, 2015, pp. 1–36

HORVÁTH, G., & KAWAZOE, K. (1983). Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 16(6), 470-475. doi:10.1252/jcej.16.470

Stöckel, E., Wu, X., Trewin, A., Wood, C. D., Clowes, R., Campbell, N. L., … Cooper, A. I. (2009). High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chem. Commun., (2), 212-214. doi:10.1039/b815044c

Zeng, Y., Zou, R., & Zhao, Y. (2016). Covalent Organic Frameworks for CO2Capture. Advanced Materials, 28(15), 2855-2873. doi:10.1002/adma.201505004

Shen, C., Yu, H., & Wang, Z. (2014). Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide. Chemical Communications, 50(76), 11238. doi:10.1039/c4cc05021e

Furukawa, S., Yoshida, Y., & Komatsu, T. (2014). Chemoselective Hydrogenation of Nitrostyrene to Aminostyrene over Pd- and Rh-Based Intermetallic Compounds. ACS Catalysis, 4(5), 1441-1450. doi:10.1021/cs500082g

Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem