- -

An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trandafir, M. M. es_ES
dc.contributor.author Pop, L. es_ES
dc.contributor.author Hadade, N. D. es_ES
dc.contributor.author Florea, M. es_ES
dc.contributor.author Neatu, F. es_ES
dc.contributor.author Teodorescu, C. M. es_ES
dc.contributor.author Duraki, B. es_ES
dc.contributor.author van Bokhoven, J. A. es_ES
dc.contributor.author Grosu, I. es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-04-06T08:57:01Z
dc.date.available 2020-04-06T08:57:01Z
dc.date.issued 2016 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140229
dc.description.abstract [EN] A bimodal (micro/mesoporous) COF was synthesized by coupling tetrakis-1,3,5,7-(4'-iodophenyl) adamantane with 4,4'-diethynylbiphenyl following a Sonogashira protocol. The COF preparation strategy led, however, to the incomplete recovery of the palladium catalyst and ICP-OES analysis indicated that around 0.1 wt% palladium remained inside the pores. Noteworthily, the remnant palladium catalyst is still accessible and can be valorised in additional catalytic reactions like the hydrogenation of nitrostyrene. Further deposition of 0.5 wt% active metals (like palladium or gold) enhanced the catalytic activity and tuned the catalyst selectivity with respect to analogous metal catalysts prepared using active carbon as a support. The resulting COF-supported metal NPs are stable and recyclable catalysts. Under normal conditions, this COF is also able to adsorb large amounts of weak electrophilic gases like carbon dioxide. es_ES
dc.description.sponsorship This work was supported by a grant from the Romanian National Authority for Scientific Research, CNDI-UEFISCDI (project numbers PCCA-II-166/2012, PCCA-II-56/2014, and PN-II-ID-PCE-2011-3-0060). M. M. T. was supported by the strategic grant POSDRU/187/1.5/S/155559 Competitive Multidisciplinary Doctoral Research at European Level (CdocMD) cofinanced by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013. C. M. T. acknowledges funding from the PN2-128/2011 Project granted by the Romanian UEFISCDI Agency. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6cy01631f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ESF//POSDRU%2F187%2F1.5%2FS%2F155559/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PCCA-II-166%2F2012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PCCA-II-56%2F2014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-II-ID-PCE-2011-3-0060/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN2-128%2F2011/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Trandafir, MM.; Pop, L.; Hadade, ND.; Florea, M.; Neatu, F.; Teodorescu, CM.; Duraki, B.... (2016). An adamantane-based COF: stability, adsorption capability, and behaviour as a catalyst and support for Pd and Au for the hydrogenation of nitrostyrene. Catalysis Science & Technology. 6(23):8344-8354. https://doi.org/10.1039/c6cy01631f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6cy01631f es_ES
dc.description.upvformatpinicio 8344 es_ES
dc.description.upvformatpfin 8354 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 23 es_ES
dc.relation.pasarela S\328484 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references G. Busca , Chapter 7 - Zeolites and Other Structurally Microporous Solids as Acid–Base Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 197–249 es_ES
dc.description.references G. Busca , Chapter 9 - Metal Catalysts for Hydrogenations and Dehydrogenations, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 297–343 es_ES
dc.description.references G. Busca , Chapter 8 - Other Solid Acid and Basic Catalytic Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 251–296 es_ES
dc.description.references Front Matter A2 - GuidoBusca, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, p. iii es_ES
dc.description.references Cote, A. P. (2005). Porous, Crystalline, Covalent Organic Frameworks. Science, 310(5751), 1166-1170. doi:10.1126/science.1120411 es_ES
dc.description.references El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O’Keeffe, M., & Yaghi, O. M. (2007). Designed Synthesis of 3D Covalent Organic Frameworks. Science, 316(5822), 268-272. doi:10.1126/science.1139915 es_ES
dc.description.references G. Busca , Chapter 1 - Heterogeneous Catalysts, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 1–7 es_ES
dc.description.references G. Busca , Chapter 2 - Preparation of Solid Catalysts: A Short Summary, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 9–22 es_ES
dc.description.references G. Busca , Chapter 3 - Characterization of Real Catalytic Materials: An Overview, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 23–35 es_ES
dc.description.references G. Busca , Chapter 6 - Metal Oxides as Acid–Base Catalytic Materials, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 103–195 es_ES
dc.description.references G. Busca , Chapter 4 - Practical Application and Testing of Catalytic Materials: A Synthesis, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 37–56 es_ES
dc.description.references G. Busca , Chapter 5 - Acid and Basic Catalysts: Fundamentals, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 57–101 es_ES
dc.description.references Copyright A2 - GuidoBusca, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, p. iv es_ES
dc.description.references G. Busca , Chapter 10 - Catalysts for Hydrogenations, Dehydrogenations and Metathesis: Sulfides and Oxides, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 345–374 es_ES
dc.description.references S. Nishimura , Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley-Interscience, New York, 2001 es_ES
dc.description.references Bing, Y., Neburchilov, V., Song, C., Baker, R., Guest, A., Ghosh, D., … Zhang, J. (2012). Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. Electrochimica Acta, 77, 225-231. doi:10.1016/j.electacta.2012.05.100 es_ES
dc.description.references Goubert-Renaudin, S. N. S., & Wieckowski, A. (2011). Ni and/or Co nanoparticles as catalysts for oxygen reduction reaction (ORR) at room temperature. Journal of Electroanalytical Chemistry, 652(1-2), 44-51. doi:10.1016/j.jelechem.2010.11.022 es_ES
dc.description.references Liu, Y., Ishihara, A., Mitsushima, S., Kamiya, N., & Ota, K. (2005). Zirconium Oxide for PEFC Cathodes. Electrochemical and Solid-State Letters, 8(8), A400. doi:10.1149/1.1943550 es_ES
dc.description.references Liu, Y., Ishihara, A., Mitsushima, S., & Ota, K. (2010). Influence of sputtering power on oxygen reduction reaction activity of zirconium oxides prepared by radio frequency reactive sputtering. Electrochimica Acta, 55(3), 1239-1244. doi:10.1016/j.electacta.2009.10.042 es_ES
dc.description.references G. Busca , Reduction of Aromatic Nitroalkenes with Baker's Yeast Chapter 2 - Preparation of Solid Catalysts: A Short Summary, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 9–22 es_ES
dc.description.references G. Busca , Chapter 11 - Oxidation Catalysts, in Heterogeneous Catalytic Materials, Elsevier, Amsterdam, 2014, pp. 375–419 es_ES
dc.description.references M. Loos , Chapter 1 - Nanoscience and Nanotechnology, in Carbon Nanotube Reinforced Composites, ed. M. Loos, William Andrew Publishing, Oxford, 2015, pp. 1–36 es_ES
dc.description.references HORVÁTH, G., & KAWAZOE, K. (1983). Method for the calculation of effective pore size distribution in molecular sieve carbon. Journal of Chemical Engineering of Japan, 16(6), 470-475. doi:10.1252/jcej.16.470 es_ES
dc.description.references Stöckel, E., Wu, X., Trewin, A., Wood, C. D., Clowes, R., Campbell, N. L., … Cooper, A. I. (2009). High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chem. Commun., (2), 212-214. doi:10.1039/b815044c es_ES
dc.description.references Zeng, Y., Zou, R., & Zhao, Y. (2016). Covalent Organic Frameworks for CO2Capture. Advanced Materials, 28(15), 2855-2873. doi:10.1002/adma.201505004 es_ES
dc.description.references Shen, C., Yu, H., & Wang, Z. (2014). Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide. Chemical Communications, 50(76), 11238. doi:10.1039/c4cc05021e es_ES
dc.description.references Furukawa, S., Yoshida, Y., & Komatsu, T. (2014). Chemoselective Hydrogenation of Nitrostyrene to Aminostyrene over Pd- and Rh-Based Intermetallic Compounds. ACS Catalysis, 4(5), 1441-1450. doi:10.1021/cs500082g es_ES
dc.description.references Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem