- -

Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility

Mostrar el registro completo del ítem

Bolaina-Lorenzo, E.; Martínez-Ramos, C.; Monleón Pradas, M.; Herrera-Kao, W.; Cauich-Rodríguez, JV.; Cervantes-Uc, JM. (2017). Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Biomedical Materials. 12(1):1-10. https://doi.org/10.1088/1748-605X/12/1/015008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140230

Ficheros en el ítem

Metadatos del ítem

Título: Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility
Autor: Bolaina-Lorenzo, Ena Martínez-Ramos, Cristina Monleón Pradas, Manuel Herrera-Kao, Wilberth Cauich-Rodríguez, Juan V Cervantes-Uc, José M
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Electrospun polycaprolactone (PCL)/chitosan (CH) blend scaffolds with different CH weight ratios were prepared to study the effect of scaffold composition on its physicochemical and biological properties. Scanning ...[+]
Palabras clave: Electrospun PCL/CH scaffolds , Nerve tissue engineering , Schwann cells , P75 cell marker
Derechos de uso: Cerrado
Fuente:
Biomedical Materials. (issn: 1748-6041 )
DOI: 10.1088/1748-605X/12/1/015008
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1748-605X/12/1/015008
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//CB-2011-169698-Y/
info:eu-repo/grantAgreement/CONACyT//236153/
info:eu-repo/grantAgreement/CONACyT//290842/
info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-1-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN EL SISTEMA NERVIOSO CENTRAL Y PERIFERICO/
Agradecimientos:
This work was supported by CONACYT (Mexico) grant CB 2011-169698-Y. Ena Bolaina-Lorenzo acknowledges CONACYT for her scholarship (236153) and for her internship support (290842) through the 'BECAS MIXTAS' program. CMR and ...[+]
Tipo: Artículo

References

Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030

Ciardelli, G., & Chiono, V. (2006). Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience, 6(1), 13-26. doi:10.1002/mabi.200500151

Chiono, V., Tonda‐Turo, C., & Ciardelli, G. (2009). Chapter 9 Artificial Scaffolds for Peripheral Nerve Reconstruction. International Review of Neurobiology, 173-198. doi:10.1016/s0074-7742(09)87009-8 [+]
Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030

Ciardelli, G., & Chiono, V. (2006). Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience, 6(1), 13-26. doi:10.1002/mabi.200500151

Chiono, V., Tonda‐Turo, C., & Ciardelli, G. (2009). Chapter 9 Artificial Scaffolds for Peripheral Nerve Reconstruction. International Review of Neurobiology, 173-198. doi:10.1016/s0074-7742(09)87009-8

Hasirci, V., Arslantunali, D., Dursun, T., Yucel, D., & Hasirci, N. (2014). Peripheral nerve conduits: technology update. Medical Devices: Evidence and Research, 405. doi:10.2147/mder.s59124

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002

Wan, Y., Lu, X., Dalai, S., & Zhang, J. (2009). Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochimica Acta, 487(1-2), 33-38. doi:10.1016/j.tca.2009.01.007

Cooper, A., Bhattarai, N., & Zhang, M. (2011). Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 85(1), 149-156. doi:10.1016/j.carbpol.2011.02.008

Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P., Weeranantanapan, O., Chuenjitbuntaworn, B., … Supaphol, P. (2007). In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. Biomacromolecules, 8(5), 1587-1594. doi:10.1021/bm061152a

Yildirim, E. D., Gandhi, M., Fridman, A., Güçeri, S., & Sun, W. (s. f.). Plasma Surface Modification of Three Dimensional Poly (ε-Caprolactone) Scaffolds for Tissue Engineering Application. NATO Science for Peace and Security Series A: Chemistry and Biology, 191-201. doi:10.1007/978-1-4020-8439-3_17

Gautam, S., Chou, C.-F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2013). Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. Journal of Materials Science, 49(3), 1076-1089. doi:10.1007/s10853-013-7785-8

Du, F., Wang, H., Zhao, W., Li, D., Kong, D., Yang, J., & Zhang, Y. (2012). Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials, 33(3), 762-770. doi:10.1016/j.biomaterials.2011.10.037

Gnavi, S., Barwig, C., Freier, T., Haastert-Talini, K., Grothe, C., & Geuna, S. (2013). The Use of Chitosan-Based Scaffolds to Enhance Regeneration in the Nervous System. Tissue Engineering of the Peripheral Nerve - Biomaterials and physical therapy, 1-62. doi:10.1016/b978-0-12-420045-6.00001-8

Malheiro, V. N., Caridade, S. G., Alves, N. M., & Mano, J. F. (2010). New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 6(2), 418-428. doi:10.1016/j.actbio.2009.07.012

Van der Schueren, L., Steyaert, I., De Schoenmaker, B., & De Clerck, K. (2012). Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydrate Polymers, 88(4), 1221-1226. doi:10.1016/j.carbpol.2012.01.085

Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., … Zhang, M. (2009). Natural-Synthetic Polyblend Nanofibers for Biomedical Applications. Advanced Materials, 21(27), 2792-2797. doi:10.1002/adma.200802513

Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydrate Polymers, 83(2), 940-946. doi:10.1016/j.carbpol.2010.09.002

Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., & Ramakrishna, S. (2008). Electrospun Biocomposite Nanofibrous Scaffolds for Neural Tissue Engineering. Tissue Engineering Part A, 14(11), 1787-1797. doi:10.1089/ten.tea.2007.0393

Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydrate Polymers, 80(2), 413-419. doi:10.1016/j.carbpol.2009.11.039

Yang, X., Chen, X., & Wang, H. (2009). Acceleration of Osteogenic Differentiation of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds. Biomacromolecules, 10(10), 2772-2778. doi:10.1021/bm900623j

Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., … Kong, D. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739-2749. doi:10.1016/j.actbio.2014.02.042

Steyaert, I., Van der Schueren, L., Rahier, H., & de Clerck, K. (2012). An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. Macromolecular Symposia, 321-322(1), 71-75. doi:10.1002/masy.201251111

Chiono, V., Vozzi, G., D’Acunto, M., Brinzi, S., Domenici, C., Vozzi, F., … Ciardelli, G. (2009). Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications. Materials Science and Engineering: C, 29(7), 2174-2187. doi:10.1016/j.msec.2009.04.020

Gomes, S. R., Rodrigues, G., Martins, G. G., Roberto, M. A., Mafra, M., Henriques, C. M. R., & Silva, J. C. (2015). In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science and Engineering: C, 46, 348-358. doi:10.1016/j.msec.2014.10.051

Sangsanoh, P., & Supaphol, P. (2006). Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 7(10), 2710-2714. doi:10.1021/bm060286l

Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001

Sarasam, A. R., Krishnaswamy, R. K., & Madihally, S. V. (2006). Blending Chitosan with Polycaprolactone:  Effects on Physicochemical and Antibacterial Properties. Biomacromolecules, 7(4), 1131-1138. doi:10.1021/bm050935d

Correia, D. M., Gámiz-González, M. A., Botelho, G., Vidaurre, A., Gomez Ribelles, J. L., Lanceros-Mendez, S., & Sencadas, V. (2014). Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 117(1), 123-130. doi:10.1007/s10973-014-3707-5

She, H., Xiao, X., & Liu, R. (2007). Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. Journal of Materials Science, 42(19), 8113-8119. doi:10.1007/s10853-007-1706-7

Senda, T., He, Y., & Inoue, Y. (2001). Biodegradable blends of poly(?-caprolactone) with?-chitin and chitosan: specific interactions, thermal properties and crystallization behavior. Polymer International, 51(1), 33-39. doi:10.1002/pi.793

SARASAM, A., & MADIHALLY, S. (2005). Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials, 26(27), 5500-5508. doi:10.1016/j.biomaterials.2005.01.071

Wanjun, T., Cunxin, W., & Donghua, C. (2005). Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation and Stability, 87(3), 389-394. doi:10.1016/j.polymdegradstab.2004.08.006

Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293-347. doi:10.1146/annurev.bioeng.5.011303.120731

Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., … Hibino, N. (2016). Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLOS ONE, 11(7), e0158555. doi:10.1371/journal.pone.0158555

Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013

Kim, S. H., Ha, H. J., Ko, Y. K., Yoon, S. J., Rhee, J. M., Kim, M. S., … Khang, G. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 18(5), 609-622. doi:10.1163/156856207780852514

Sangsanoh, P., Suwantong, O., Neamnark, A., Cheepsunthorn, P., Pavasant, P., & Supaphol, P. (2010). In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal, 46(3), 428-440. doi:10.1016/j.eurpolymj.2009.10.029

Duda, S., Dreyer, L., Behrens, P., Wienecke, S., Chakradeo, T., Glasmacher, B., & Haastert-Talini, K. (2014). Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides. BioMed Research International, 2014, 1-16. doi:10.1155/2014/835269

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem