- -

Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bolaina-Lorenzo, Ena es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Herrera-Kao, Wilberth es_ES
dc.contributor.author Cauich-Rodríguez, Juan V es_ES
dc.contributor.author Cervantes-Uc, José M es_ES
dc.date.accessioned 2020-04-06T08:57:03Z
dc.date.available 2020-04-06T08:57:03Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1748-6041 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140230
dc.description.abstract [EN] Electrospun polycaprolactone (PCL)/chitosan (CH) blend scaffolds with different CH weight ratios were prepared to study the effect of scaffold composition on its physicochemical and biological properties. Scanning electron microscopy showed bead-free homogeneous randomly arranged nanofibers whose average diameter decreased from 240 to 110 nm with increasing CH content. The infrared spectra of the PCL/CH blends were very similar to the neat PCL scaffold. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of carbon, oxygen and nitrogen in the scaffolds, although fluorine-from chemicals used as solvent-was also detected. The water contact angle decreased from 113 degrees (for PCL) to 52 degrees with increasing chitosan content. The biocompatibility was evaluated using fibroblasts and Schwann cell (SC) cultures. Cytotoxicity assays using fibroblasts demonstrated that electrospun scaffolds could be considered as non-cytotoxic material. Biocompatibility tests also revealed that the SCs adhered to scaffolds with different CH content, although the formulation containing CH at 5 wt% exhibited the highest proliferation on days 1 and 3. A better cell distribution was observed in the CH/PCL blends than in the neat PCL or CH scaffolds, where the cells were clustered. Immunochemistry analysis confirmed that SCs expressed the specific p75 cell marker on the scaffolds, suggesting that PCL/CH scaffolds would be good candidates for peripheral nerve tissue engineering. es_ES
dc.description.sponsorship This work was supported by CONACYT (Mexico) grant CB 2011-169698-Y. Ena Bolaina-Lorenzo acknowledges CONACYT for her scholarship (236153) and for her internship support (290842) through the 'BECAS MIXTAS' program. CMR and MMP acknowledge support of the Spanish Ministry through project MAT2015-66666-C3-1-R. Assistance and advice received from the Electron Microscopy Service at the Universitat Politecnica de Valencia is also acknowledged. Support from the Fondo Mixto CONACYT-Gobierno del Estado de Yucatan, project no. 247046, 'Fortalecimiento e Internacionalizacion del Doctorado en Ciencias (Materiales Polimericos)' is also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Biomedical Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrospun PCL/CH scaffolds es_ES
dc.subject Nerve tissue engineering es_ES
dc.subject Schwann cells es_ES
dc.subject P75 cell marker es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1748-605X/12/1/015008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CB-2011-169698-Y/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//236153/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//290842/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-66666-C3-1-R/ES/BIOHIBRIDOS PARA LA PROMOCION DEL CRECIMIENTO AXONAL Y LA REGENERACION EN EL SISTEMA NERVIOSO CENTRAL Y PERIFERICO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Bolaina-Lorenzo, E.; Martínez-Ramos, C.; Monleón Pradas, M.; Herrera-Kao, W.; Cauich-Rodríguez, JV.; Cervantes-Uc, JM. (2017). Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Biomedical Materials. 12(1):1-10. https://doi.org/10.1088/1748-605X/12/1/015008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1748-605X/12/1/015008 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\326572 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Fondo Mixto CONACYT-Gobierno del Estado de Yucatan es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030 es_ES
dc.description.references Ciardelli, G., & Chiono, V. (2006). Materials for Peripheral Nerve Regeneration. Macromolecular Bioscience, 6(1), 13-26. doi:10.1002/mabi.200500151 es_ES
dc.description.references Chiono, V., Tonda‐Turo, C., & Ciardelli, G. (2009). Chapter 9 Artificial Scaffolds for Peripheral Nerve Reconstruction. International Review of Neurobiology, 173-198. doi:10.1016/s0074-7742(09)87009-8 es_ES
dc.description.references Hasirci, V., Arslantunali, D., Dursun, T., Yucel, D., & Hasirci, N. (2014). Peripheral nerve conduits: technology update. Medical Devices: Evidence and Research, 405. doi:10.2147/mder.s59124 es_ES
dc.description.references Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 es_ES
dc.description.references Wan, Y., Lu, X., Dalai, S., & Zhang, J. (2009). Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochimica Acta, 487(1-2), 33-38. doi:10.1016/j.tca.2009.01.007 es_ES
dc.description.references Cooper, A., Bhattarai, N., & Zhang, M. (2011). Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydrate Polymers, 85(1), 149-156. doi:10.1016/j.carbpol.2011.02.008 es_ES
dc.description.references Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P., Weeranantanapan, O., Chuenjitbuntaworn, B., … Supaphol, P. (2007). In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. Biomacromolecules, 8(5), 1587-1594. doi:10.1021/bm061152a es_ES
dc.description.references Yildirim, E. D., Gandhi, M., Fridman, A., Güçeri, S., & Sun, W. (s. f.). Plasma Surface Modification of Three Dimensional Poly (ε-Caprolactone) Scaffolds for Tissue Engineering Application. NATO Science for Peace and Security Series A: Chemistry and Biology, 191-201. doi:10.1007/978-1-4020-8439-3_17 es_ES
dc.description.references Gautam, S., Chou, C.-F., Dinda, A. K., Potdar, P. D., & Mishra, N. C. (2013). Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. Journal of Materials Science, 49(3), 1076-1089. doi:10.1007/s10853-013-7785-8 es_ES
dc.description.references Du, F., Wang, H., Zhao, W., Li, D., Kong, D., Yang, J., & Zhang, Y. (2012). Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Biomaterials, 33(3), 762-770. doi:10.1016/j.biomaterials.2011.10.037 es_ES
dc.description.references Gnavi, S., Barwig, C., Freier, T., Haastert-Talini, K., Grothe, C., & Geuna, S. (2013). The Use of Chitosan-Based Scaffolds to Enhance Regeneration in the Nervous System. Tissue Engineering of the Peripheral Nerve - Biomaterials and physical therapy, 1-62. doi:10.1016/b978-0-12-420045-6.00001-8 es_ES
dc.description.references Malheiro, V. N., Caridade, S. G., Alves, N. M., & Mano, J. F. (2010). New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 6(2), 418-428. doi:10.1016/j.actbio.2009.07.012 es_ES
dc.description.references Van der Schueren, L., Steyaert, I., De Schoenmaker, B., & De Clerck, K. (2012). Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydrate Polymers, 88(4), 1221-1226. doi:10.1016/j.carbpol.2012.01.085 es_ES
dc.description.references Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., … Zhang, M. (2009). Natural-Synthetic Polyblend Nanofibers for Biomedical Applications. Advanced Materials, 21(27), 2792-2797. doi:10.1002/adma.200802513 es_ES
dc.description.references Hong, S., & Kim, G. (2011). Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydrate Polymers, 83(2), 940-946. doi:10.1016/j.carbpol.2010.09.002 es_ES
dc.description.references Prabhakaran, M. P., Venugopal, J. R., Chyan, T. T., Hai, L. B., Chan, C. K., Lim, A. Y., & Ramakrishna, S. (2008). Electrospun Biocomposite Nanofibrous Scaffolds for Neural Tissue Engineering. Tissue Engineering Part A, 14(11), 1787-1797. doi:10.1089/ten.tea.2007.0393 es_ES
dc.description.references Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V., & Jayakumar, R. (2010). Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydrate Polymers, 80(2), 413-419. doi:10.1016/j.carbpol.2009.11.039 es_ES
dc.description.references Yang, X., Chen, X., & Wang, H. (2009). Acceleration of Osteogenic Differentiation of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds. Biomacromolecules, 10(10), 2772-2778. doi:10.1021/bm900623j es_ES
dc.description.references Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., … Kong, D. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739-2749. doi:10.1016/j.actbio.2014.02.042 es_ES
dc.description.references Steyaert, I., Van der Schueren, L., Rahier, H., & de Clerck, K. (2012). An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. Macromolecular Symposia, 321-322(1), 71-75. doi:10.1002/masy.201251111 es_ES
dc.description.references Chiono, V., Vozzi, G., D’Acunto, M., Brinzi, S., Domenici, C., Vozzi, F., … Ciardelli, G. (2009). Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications. Materials Science and Engineering: C, 29(7), 2174-2187. doi:10.1016/j.msec.2009.04.020 es_ES
dc.description.references Gomes, S. R., Rodrigues, G., Martins, G. G., Roberto, M. A., Mafra, M., Henriques, C. M. R., & Silva, J. C. (2015). In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Materials Science and Engineering: C, 46, 348-358. doi:10.1016/j.msec.2014.10.051 es_ES
dc.description.references Sangsanoh, P., & Supaphol, P. (2006). Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 7(10), 2710-2714. doi:10.1021/bm060286l es_ES
dc.description.references Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 273(2), 381-387. doi:10.1016/j.jcis.2004.02.001 es_ES
dc.description.references Sarasam, A. R., Krishnaswamy, R. K., & Madihally, S. V. (2006). Blending Chitosan with Polycaprolactone:  Effects on Physicochemical and Antibacterial Properties. Biomacromolecules, 7(4), 1131-1138. doi:10.1021/bm050935d es_ES
dc.description.references Correia, D. M., Gámiz-González, M. A., Botelho, G., Vidaurre, A., Gomez Ribelles, J. L., Lanceros-Mendez, S., & Sencadas, V. (2014). Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 117(1), 123-130. doi:10.1007/s10973-014-3707-5 es_ES
dc.description.references She, H., Xiao, X., & Liu, R. (2007). Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. Journal of Materials Science, 42(19), 8113-8119. doi:10.1007/s10853-007-1706-7 es_ES
dc.description.references Senda, T., He, Y., & Inoue, Y. (2001). Biodegradable blends of poly(?-caprolactone) with?-chitin and chitosan: specific interactions, thermal properties and crystallization behavior. Polymer International, 51(1), 33-39. doi:10.1002/pi.793 es_ES
dc.description.references SARASAM, A., & MADIHALLY, S. (2005). Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials, 26(27), 5500-5508. doi:10.1016/j.biomaterials.2005.01.071 es_ES
dc.description.references Wanjun, T., Cunxin, W., & Donghua, C. (2005). Kinetic studies on the pyrolysis of chitin and chitosan. Polymer Degradation and Stability, 87(3), 389-394. doi:10.1016/j.polymdegradstab.2004.08.006 es_ES
dc.description.references Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293-347. doi:10.1146/annurev.bioeng.5.011303.120731 es_ES
dc.description.references Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., … Hibino, N. (2016). Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLOS ONE, 11(7), e0158555. doi:10.1371/journal.pone.0158555 es_ES
dc.description.references Arima, Y., & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28(20), 3074-3082. doi:10.1016/j.biomaterials.2007.03.013 es_ES
dc.description.references Kim, S. H., Ha, H. J., Ko, Y. K., Yoon, S. J., Rhee, J. M., Kim, M. S., … Khang, G. (2007). Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 18(5), 609-622. doi:10.1163/156856207780852514 es_ES
dc.description.references Sangsanoh, P., Suwantong, O., Neamnark, A., Cheepsunthorn, P., Pavasant, P., & Supaphol, P. (2010). In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. European Polymer Journal, 46(3), 428-440. doi:10.1016/j.eurpolymj.2009.10.029 es_ES
dc.description.references Duda, S., Dreyer, L., Behrens, P., Wienecke, S., Chakradeo, T., Glasmacher, B., & Haastert-Talini, K. (2014). Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides. BioMed Research International, 2014, 1-16. doi:10.1155/2014/835269 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem