- -

Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor

Show full item record

Sabek, J.; Torrijos-Morán, L.; Griol Barres, A.; Díaz-Betancor, Z.; Bañuls Polo, M.; Maquieira Catala, Á.; García-Rupérez, J. (2018). Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor. Biosensors. 9(1):1-9. https://doi.org/10.3390/bios9010006

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140233

Files in this item

Item Metadata

Title: Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor
Author: Sabek, Jad Torrijos-Morán, Luis Griol Barres, Amadeu Díaz-Betancor, Zeneida Bañuls Polo, María-José Maquieira Catala, Ángel García-Rupérez, Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] A protocol for the covalent biofunctionalization of silicon-based biosensors using a UV light-induced thiol-ene coupling (TEC) reaction has been developed. This biofunctionalization approach has been used to immobilize ...[+]
Subjects: Biofunctionalization , UV light photocatalysis , Half antibodies , Silicon on insulator , Nanophotonic sensor
Copyrigths: Reconocimiento (by)
Source:
Biosensors. (issn: 2079-6374 )
DOI: 10.3390/bios9010006
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/bios9010006
Project ID:
info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/
Thanks:
This work was supported by the Horizon 2020 Programme of the European Union under the project H2020-PHC-634013 (PHOCNOSIS).
Type: Artículo

References

Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip, 7(1), 41-57. doi:10.1039/b611455e

Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934

Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 [+]
Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip, 7(1), 41-57. doi:10.1039/b611455e

Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934

Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025

Vestergaard, M., Kerman, K., & Tamiya, E. (2007). An Overview of Label-free Electrochemical Protein Sensors. Sensors, 7(12), 3442-3458. doi:10.3390/s7123442

Johnson, B. N., & Mutharasan, R. (2012). Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics, 32(1), 1-18. doi:10.1016/j.bios.2011.10.054

Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C. M., & Waldmann, H. (2008). Chemical Strategies for Generating Protein Biochips. Angewandte Chemie International Edition, 47(50), 9618-9647. doi:10.1002/anie.200801711

Phaner-Goutorbe, M., Dugas, V., Chevolot, Y., & Souteyrand, E. (2011). Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study. Materials Science and Engineering: C, 31(2), 384-390. doi:10.1016/j.msec.2010.10.016

Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d

Escorihuela, J., Bañuls, M. J., Puchades, R., & Maquieira, Á. (2012). DNA microarrays on silicon surfaces through thiol-ene chemistry. Chemical Communications, 48(15), 2116. doi:10.1039/c2cc17321b

González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4

Alonso, R., Jiménez-Meneses, P., García-Rupérez, J., Bañuls, M.-J., & Maquieira, Á. (2018). Thiol–ene click chemistry towards easy microarraying of half-antibodies. Chemical Communications, 54(48), 6144-6147. doi:10.1039/c8cc01369a

González-Guerrero, A. B., Alvarez, M., Castaño, A. G., Domínguez, C., & Lechuga, L. M. (2013). A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors. Journal of Colloid and Interface Science, 393, 402-410. doi:10.1016/j.jcis.2012.10.040

Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145

Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717

Golas, A., Parhi, P., Dimachkie, Z. O., Siedlecki, C. A., & Vogler, E. A. (2010). Surface-energy dependent contact activation of blood factor XII. Biomaterials, 31(6), 1068-1079. doi:10.1016/j.biomaterials.2009.10.039

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record