- -

Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sabek, Jad es_ES
dc.contributor.author Torrijos-Morán, Luis es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Díaz-Betancor, Zeneida es_ES
dc.contributor.author Bañuls Polo, María-José es_ES
dc.contributor.author Maquieira Catala, Ángel es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-04-06T08:57:07Z
dc.date.available 2020-04-06T08:57:07Z
dc.date.issued 2018-12-30 es_ES
dc.identifier.issn 2079-6374 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140233
dc.description.abstract [EN] A protocol for the covalent biofunctionalization of silicon-based biosensors using a UV light-induced thiol-ene coupling (TEC) reaction has been developed. This biofunctionalization approach has been used to immobilize half antibodies (hIgG), which have been obtained by means of a tris(2-carboxyethyl)phosphine (TCEP) reduction at the hinge region, to the surface of a vinyl-activated silicon-on-insulator (SOI) nanophotonic sensing chip. The response of the sensing structures within the nanophotonic chip was monitored in real time during the biofunctionalization process, which has allowed us to confirm that the bioconjugation of the thiol-terminated bioreceptors onto the vinyl-activated sensing surface is only initiated upon UV light photocatalysis. es_ES
dc.description.sponsorship This work was supported by the Horizon 2020 Programme of the European Union under the project H2020-PHC-634013 (PHOCNOSIS). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Biosensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biofunctionalization es_ES
dc.subject UV light photocatalysis es_ES
dc.subject Half antibodies es_ES
dc.subject Silicon on insulator es_ES
dc.subject Nanophotonic sensor es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bios9010006 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Sabek, J.; Torrijos-Morán, L.; Griol Barres, A.; Díaz-Betancor, Z.; Bañuls Polo, M.; Maquieira Catala, Á.; García-Rupérez, J. (2018). Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor. Biosensors. 9(1):1-9. https://doi.org/10.3390/bios9010006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/bios9010006 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\374986 es_ES
dc.description.references Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip, 7(1), 41-57. doi:10.1039/b611455e es_ES
dc.description.references Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934 es_ES
dc.description.references Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 es_ES
dc.description.references Vestergaard, M., Kerman, K., & Tamiya, E. (2007). An Overview of Label-free Electrochemical Protein Sensors. Sensors, 7(12), 3442-3458. doi:10.3390/s7123442 es_ES
dc.description.references Johnson, B. N., & Mutharasan, R. (2012). Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics, 32(1), 1-18. doi:10.1016/j.bios.2011.10.054 es_ES
dc.description.references Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C. M., & Waldmann, H. (2008). Chemical Strategies for Generating Protein Biochips. Angewandte Chemie International Edition, 47(50), 9618-9647. doi:10.1002/anie.200801711 es_ES
dc.description.references Phaner-Goutorbe, M., Dugas, V., Chevolot, Y., & Souteyrand, E. (2011). Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study. Materials Science and Engineering: C, 31(2), 384-390. doi:10.1016/j.msec.2010.10.016 es_ES
dc.description.references Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d es_ES
dc.description.references Escorihuela, J., Bañuls, M. J., Puchades, R., & Maquieira, Á. (2012). DNA microarrays on silicon surfaces through thiol-ene chemistry. Chemical Communications, 48(15), 2116. doi:10.1039/c2cc17321b es_ES
dc.description.references González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4 es_ES
dc.description.references Alonso, R., Jiménez-Meneses, P., García-Rupérez, J., Bañuls, M.-J., & Maquieira, Á. (2018). Thiol–ene click chemistry towards easy microarraying of half-antibodies. Chemical Communications, 54(48), 6144-6147. doi:10.1039/c8cc01369a es_ES
dc.description.references González-Guerrero, A. B., Alvarez, M., Castaño, A. G., Domínguez, C., & Lechuga, L. M. (2013). A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors. Journal of Colloid and Interface Science, 393, 402-410. doi:10.1016/j.jcis.2012.10.040 es_ES
dc.description.references Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 es_ES
dc.description.references Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717 es_ES
dc.description.references Golas, A., Parhi, P., Dimachkie, Z. O., Siedlecki, C. A., & Vogler, E. A. (2010). Surface-energy dependent contact activation of blood factor XII. Biomaterials, 31(6), 1068-1079. doi:10.1016/j.biomaterials.2009.10.039 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem