Mostrar el registro sencillo del ítem
dc.contributor.author | Sabek, Jad | es_ES |
dc.contributor.author | Torrijos-Morán, Luis | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Díaz-Betancor, Zeneida | es_ES |
dc.contributor.author | Bañuls Polo, María-José | es_ES |
dc.contributor.author | Maquieira Catala, Ángel | es_ES |
dc.contributor.author | García-Rupérez, Jaime | es_ES |
dc.date.accessioned | 2020-04-06T08:57:07Z | |
dc.date.available | 2020-04-06T08:57:07Z | |
dc.date.issued | 2018-12-30 | es_ES |
dc.identifier.issn | 2079-6374 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140233 | |
dc.description.abstract | [EN] A protocol for the covalent biofunctionalization of silicon-based biosensors using a UV light-induced thiol-ene coupling (TEC) reaction has been developed. This biofunctionalization approach has been used to immobilize half antibodies (hIgG), which have been obtained by means of a tris(2-carboxyethyl)phosphine (TCEP) reduction at the hinge region, to the surface of a vinyl-activated silicon-on-insulator (SOI) nanophotonic sensing chip. The response of the sensing structures within the nanophotonic chip was monitored in real time during the biofunctionalization process, which has allowed us to confirm that the bioconjugation of the thiol-terminated bioreceptors onto the vinyl-activated sensing surface is only initiated upon UV light photocatalysis. | es_ES |
dc.description.sponsorship | This work was supported by the Horizon 2020 Programme of the European Union under the project H2020-PHC-634013 (PHOCNOSIS). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Biosensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Biofunctionalization | es_ES |
dc.subject | UV light photocatalysis | es_ES |
dc.subject | Half antibodies | es_ES |
dc.subject | Silicon on insulator | es_ES |
dc.subject | Nanophotonic sensor | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/bios9010006 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Sabek, J.; Torrijos-Morán, L.; Griol Barres, A.; Díaz-Betancor, Z.; Bañuls Polo, M.; Maquieira Catala, Á.; García-Rupérez, J. (2018). Real Time Monitoring of a UV Light-Assisted Biofunctionalization Protocol Using a Nanophotonic Biosensor. Biosensors. 9(1):1-9. https://doi.org/10.3390/bios9010006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/bios9010006 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\374986 | es_ES |
dc.description.references | Chin, C. D., Linder, V., & Sia, S. K. (2007). Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip, 7(1), 41-57. doi:10.1039/b611455e | es_ES |
dc.description.references | Wu, J., Dong, M., Santos, S., Rigatto, C., Liu, Y., & Lin, F. (2017). Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 17(12), 2934. doi:10.3390/s17122934 | es_ES |
dc.description.references | Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 | es_ES |
dc.description.references | Vestergaard, M., Kerman, K., & Tamiya, E. (2007). An Overview of Label-free Electrochemical Protein Sensors. Sensors, 7(12), 3442-3458. doi:10.3390/s7123442 | es_ES |
dc.description.references | Johnson, B. N., & Mutharasan, R. (2012). Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics, 32(1), 1-18. doi:10.1016/j.bios.2011.10.054 | es_ES |
dc.description.references | Jonkheijm, P., Weinrich, D., Schröder, H., Niemeyer, C. M., & Waldmann, H. (2008). Chemical Strategies for Generating Protein Biochips. Angewandte Chemie International Edition, 47(50), 9618-9647. doi:10.1002/anie.200801711 | es_ES |
dc.description.references | Phaner-Goutorbe, M., Dugas, V., Chevolot, Y., & Souteyrand, E. (2011). Silanization of silica and glass slides for DNA microarrays by impregnation and gas phase protocols: A comparative study. Materials Science and Engineering: C, 31(2), 384-390. doi:10.1016/j.msec.2010.10.016 | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M.-J., Grijalvo, S., Eritja, R., Puchades, R., & Maquieira, Á. (2014). Direct Covalent Attachment of DNA Microarrays by Rapid Thiol–Ene «Click» Chemistry. Bioconjugate Chemistry, 25(3), 618-627. doi:10.1021/bc500033d | es_ES |
dc.description.references | Escorihuela, J., Bañuls, M. J., Puchades, R., & Maquieira, Á. (2012). DNA microarrays on silicon surfaces through thiol-ene chemistry. Chemical Communications, 48(15), 2116. doi:10.1039/c2cc17321b | es_ES |
dc.description.references | González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4 | es_ES |
dc.description.references | Alonso, R., Jiménez-Meneses, P., García-Rupérez, J., Bañuls, M.-J., & Maquieira, Á. (2018). Thiol–ene click chemistry towards easy microarraying of half-antibodies. Chemical Communications, 54(48), 6144-6147. doi:10.1039/c8cc01369a | es_ES |
dc.description.references | González-Guerrero, A. B., Alvarez, M., Castaño, A. G., Domínguez, C., & Lechuga, L. M. (2013). A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors. Journal of Colloid and Interface Science, 393, 402-410. doi:10.1016/j.jcis.2012.10.040 | es_ES |
dc.description.references | Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 | es_ES |
dc.description.references | Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express, 9(4), 1717. doi:10.1364/boe.9.001717 | es_ES |
dc.description.references | Golas, A., Parhi, P., Dimachkie, Z. O., Siedlecki, C. A., & Vogler, E. A. (2010). Surface-energy dependent contact activation of blood factor XII. Biomaterials, 31(6), 1068-1079. doi:10.1016/j.biomaterials.2009.10.039 | es_ES |