- -

Lp-calculus approach to the random autonomous linear differential equation with discrete delay

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lp-calculus approach to the random autonomous linear differential equation with discrete delay

Mostrar el registro completo del ítem

Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Lp-calculus approach to the random autonomous linear differential equation with discrete delay. Mediterranean Journal of Mathematics. 16(4):1-17. https://doi.org/10.1007/s00009-019-1370-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140237

Ficheros en el ítem

Metadatos del ítem

Título: Lp-calculus approach to the random autonomous linear differential equation with discrete delay
Autor: Calatayud-Gregori, Julia Cortés, J.-C. Jornet-Sanz, Marc
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we provide a full probabilistic study of the random autonomous linear differential equation with discrete delay , with initial condition x(t)=g(t), -t0. The coefficients a and b are assumed to be random ...[+]
Palabras clave: Random autonomous linear differential equation with discrete delay , Lp random calculus , Method of steps , Uncertainty quantification
Derechos de uso: Reserva de todos los derechos
Fuente:
Mediterranean Journal of Mathematics. (issn: 1660-5446 )
DOI: 10.1007/s00009-019-1370-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00009-019-1370-6
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y ...[+]
Tipo: Artículo

References

Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics. Springer, New York (2011)

Driver, Y.: Ordinary and Delay Differential Equations. Applied Mathematical Science Series. Springer, New York (1977)

Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics. Academic Press, Cambridge (2012) [+]
Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics. Springer, New York (2011)

Driver, Y.: Ordinary and Delay Differential Equations. Applied Mathematical Science Series. Springer, New York (1977)

Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics. Academic Press, Cambridge (2012)

Bocharov, G.A., Rihan, F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125, 183–199 (2000). https://doi.org/10.1016/S0377-0427(00)00468-4

Jackson, M., Chen-Charpentier, B.M.: Modeling plant virus propagation with delays. J. Comput. Appl. Math. 309, 611–621 (2017). https://doi.org/10.1016/j.cam.2016.04.024

Chen-Charpentier, B.M., Diakite, I.: A mathematical model of bone remodeling with delays. J. Comput. Appl. Math. 291, 76–84 (2016). https://doi.org/10.1016/j.cam.2017.01.005

Erneux, T.: Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences Series. Springer, New York (2009)

Kyrychko, Y.N., Hogan, S.J.: On the Use of delay equations in engineering applications. J. Vib. Control 16(7–8), 943–960 (2017). https://doi.org/10.1177/1077546309341100

Matsumoto, A., Szidarovszky, F.: Delay Differential Nonlinear Economic Models (in Nonlinear Dynamics in Economics, Finance and the Social Sciences), 195–214. Springer-Verlag, Berlin Heidelberg (2010)

Harding, L., Neamtu, M.: A dynamic model of unemployment with migration and delayed policy intervention. Comput. Econ. 51(3), 427–462 (2018). https://doi.org/10.1007/s10614-016-9610-3

Oksendal, B.: Stochastic Differential Equations. Springer, New York (1998)

Shaikhet, L.: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, New York (2013)

Hartung, F., Pituk, M.: Recent Advances in Delay Differential and Differences Equations. Springer-Verlag, Berlin Heidelberg (2014)

Shaikhet, L.: Stability of equilibrium states of a nonlinear delay differential equation with stochastic perturbations. Int. J. Robust Nonlinear Control 27(6), 915–924 (2016). https://doi.org/10.1002/rnc.3605

Shaikhet, L.: About some asymptotic properties of solution of stochastic delay differential equation with a logarithmic nonlinearity. Funct. Differ. Equ. 4(1–2), 57–67 (2017)

Fridman, E., Shaikhet, L.: Delay-induced stability of vector second-order systems via simple Lyapunov functionals. Automatica 74, 288–296 (2016). https://doi.org/10.1016/j.automatica.2016.07.034

Benhadri, M., Zeghdoudi, H.: Mean square asymptotic stability in nonlinear stochastic neutral Volterra-Levin equations with Poisson jumps and variable delays. Functiones et Approximatio Commentarii Mathematici 58(2), 157–176 (2018). https://doi.org/10.7169/facm/1657

Nouri, K., Ranjbar, H.: Improved Euler-Maruyama method for numerical solution of the Itô stochastic differential systems by composite previous-current-step idea. Mediterr. J. Math. 15, 140 (2018). https://doi.org/10.1007/s00009-018-1187-8

Santonja, F., Shaikhet, L.: Probabilistic stability analysis of social obesity epidemic by a delayed stochastic model. Nonlinear Anal. Real World Appl. 17, 114–125 (2014). https://doi.org/10.1016/j.nonrwa.2013.10.010

Santonja, F., Shaikhet, L.: Analysing social epidemics by delayed stochastic models. Discret. Dyn. Nat. Soc. 2012, 13 (2012). https://doi.org/10.1155/2012/530472 . (Article ID 530472)

Liu, L., Caraballo, T.: Analysis of a stochastic 2D-Navier-Stokes model with infinite delay. J. Dyn. Differ. Equ. pp 1–26 (2018). https://doi.org/10.1007/s10884-018-9703-x

Caraballo, T., Colucci, R., Guerrini, L.: On a predator prey model with nonlinear harvesting and distributed delay. Commun. Pure Appl. Anal. 17(6), 2703–2727 (2018). https://doi.org/10.3934/cpaa.2018128

Smith, R.C.: Uncertainty Quantification. Theory, Implementation and Applications. SIAM, Philadelphia (2014)

Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)

Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 12(3), 1123–1140 (2015). https://doi.org/10.1007/s00009-014-0452-8

Zhou, T.: A stochastic collocation method for delay differential equations with random input. Adv. Appl. Math. Mech. 6(4), 403–418 (2014). https://doi.org/10.4208/aamm.2012.m38

Shi, W., Zhang, C.: Generalized polynomial chaos for nonlinear random delay differential equations. Appl. Numer. Math. 115, 16–31 (2017). https://doi.org/10.1016/j.apnum.2016.12.004

Lupulescu, V., Abbas, U.: Fuzzy delay differential equations. Fuzzy Optim. Decis. Mak. 11(1), 91–111 (2012). https://doi.org/10.1007/s10700-011-9112-7

Liu, S., Debbouche, A., Wang, J.R.: Fuzzy delay differential equations. On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. J. Comput. Appl. Math. 312, 47–57 (2017). https://doi.org/10.1016/j.cam.2015.10.028

Krapivsky, P.L., Luck, J.L., Mallick, K.: On stochastic differential equations with random delay. J. Stat. Mech. Theory Exp. (2011). https://doi.org/10.1088/1742-5468/2011/10/P10008

Garrido-Atienza, M.J., Ogrowsky, A., Schmalfuss, B.: Random differential equations with random delays. Stoch. Dyn. 11(2–3), 369–388 (2011). https://doi.org/10.1142/S0219493711003358

Khusainov, D.Y., Ivanov, A.F., Kovarzh, I.V.: Solution of one heat equation with delay. Nonlinear Oscil. 12, 260–282 (2009). https://doi.org/10.1007/s11072-009-0075-3

Asl, F.M., Ulsoy, A.G.: Analysis of a system of linear delay differential equations. J. Dyn. Syst. Meas. Control 125, 215–223 (2003). https://doi.org/10.1115/1.1568121

Kyrychko, Y.N., Hogan, S.J.: On the use of delay equations in engineering applications. J. Vib. Control 16(7–8), 943–960 (2010). https://doi.org/10.1177/1077546309341100

Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010). https://doi.org/10.1016/j.camwa.2009.08.061

Strand, J.L.: Random ordinary differential equations. J. Diff. Equ. 7(3), 538–553 (1970). https://doi.org/10.1016/0022-0396(70)90100-2

Khusainov, D.Y., Pokojovy, M.: Solving the linear 1d thermoelasticity equations with pure delay. Int. J. Math. Math. Sci. 2015, 1–11 (2015). https://doi.org/10.1155/2015/479267

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem