- -

Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon

Show full item record

Martín-Sánchez, D.; Ponce-Alcántara, S.; Martinez-Perez, P.; García-Rupérez, J. (2019). Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon. Journal of The Electrochemical Society. 166(2):B9-B12. https://doi.org/10.1149/2.0051902jes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140238

Files in this item

Item Metadata

Title: Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon
Author: Martín-Sánchez, David Ponce-Alcántara, Salvador Martinez-Perez, Paula García-Rupérez, Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] Tuning the pore diameter of porous silicon films is essential for some applications such as biosensing, where the pore size can be used for filtering analytes or to control the biofunctionalization of its walls. ...[+]
Subjects: Porous silicon , Macropore , DMF , KOH
Copyrigths: Reconocimiento (by)
Source:
Journal of The Electrochemical Society. (issn: 0013-4651 )
DOI: 10.1149/2.0051902jes
Publisher:
The Electrochemical Society
Publisher version: https://doi.org/10.1149/2.0051902jes
Project ID:
info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/
Thanks:
The authors acknowledge the funding from the Spanish government through the project TEC2015-63838-C3-1-R-OPTONANOSENS.
Type: Artículo

References

Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57(10), 1046-1048. doi:10.1063/1.103561

Dhanekar, S., & Jain, S. (2013). Porous silicon biosensor: Current status. Biosensors and Bioelectronics, 41, 54-64. doi:10.1016/j.bios.2012.09.045

Pacholski, C. (2013). Photonic Crystal Sensors Based on Porous Silicon. Sensors, 13(4), 4694-4713. doi:10.3390/s130404694 [+]
Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57(10), 1046-1048. doi:10.1063/1.103561

Dhanekar, S., & Jain, S. (2013). Porous silicon biosensor: Current status. Biosensors and Bioelectronics, 41, 54-64. doi:10.1016/j.bios.2012.09.045

Pacholski, C. (2013). Photonic Crystal Sensors Based on Porous Silicon. Sensors, 13(4), 4694-4713. doi:10.3390/s130404694

Hutter, T., Horesh, M., & Ruschin, S. (2011). Method for increasing reliability in gas detection based on indicator gradient in a sensor array. Sensors and Actuators B: Chemical, 152(1), 29-36. doi:10.1016/j.snb.2010.09.058

Mariani, S., Strambini, L. M., & Barillaro, G. (2016). Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 88(17), 8502-8509. doi:10.1021/acs.analchem.6b01228

Caroselli, R., Ponce-Alcántara, S., Quilez, F. P., Sánchez, D. M., Morán, L. T., Barres, A. G., … García-Rupérez, J. (2017). Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements. Optics Express, 25(25), 31651. doi:10.1364/oe.25.031651

Ashuri, M., He, Q., & Shaw, L. L. (2016). Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 8(1), 74-103. doi:10.1039/c5nr05116a

Ashuri, M., He, Q., Liu, Y., Zhang, K., Emani, S., Sawicki, M. S., … Shaw, L. L. (2016). Hollow Silicon Nanospheres Encapsulated with a Thin Carbon Shell: An Electrochemical Study. Electrochimica Acta, 215, 126-141. doi:10.1016/j.electacta.2016.08.059

Ashuri, M., He, Q., Liu, Y., Emani, S., & Shaw, L. L. (2017). Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids. Electrochimica Acta, 258, 274-283. doi:10.1016/j.electacta.2017.10.198

Ashuri, M., He, Q., Zhang, K., Emani, S., & Shaw, L. L. (2016). Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles. Journal of Sol-Gel Science and Technology, 82(1), 201-213. doi:10.1007/s10971-016-4265-z

Liu, N., Huo, K., McDowell, M. T., Zhao, J., & Cui, Y. (2013). Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports, 3(1). doi:10.1038/srep01919

Yi, R., Dai, F., Gordin, M. L., Chen, S., & Wang, D. (2012). Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials, 3(3), 295-300. doi:10.1002/aenm.201200857

Föll, H., Christophersen, M., Carstensen, J., & Hasse, G. (2002). Formation and application of porous silicon. Materials Science and Engineering: R: Reports, 39(4), 93-141. doi:10.1016/s0927-796x(02)00090-6

Zhang G. X. , in Modern Aspects of Electrochemistry, Vayenas C. Gamboa-Adelco M. E. , Springer, Boston, USA, (2006).

Canham L. T. , in Handbook of porous silicon, Canham L. T. , Springer International Publishing, Switzerland (2014).

Lehmann, V., & Föll, H. (1990). Formation Mechanism and Properties of Electrochemically Etched Trenches in n‐Type Silicon. Journal of The Electrochemical Society, 137(2), 653-659. doi:10.1149/1.2086525

Lehmann, V., & Ronnebeck, S. (1999). The Physics of Macropore Formation in Low‐Doped p‐Type Silicon. Journal of The Electrochemical Society, 146(8), 2968-2975. doi:10.1149/1.1392037

Lehmann, V., Stengl, R., & Luigart, A. (2000). On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering: B, 69-70, 11-22. doi:10.1016/s0921-5107(99)00286-x

Mariani, S., Pino, L., Strambini, L. M., Tedeschi, L., & Barillaro, G. (2016). 10 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors. ACS Sensors, 1(12), 1471-1479. doi:10.1021/acssensors.6b00634

Lau, H. ., Parker, G. ., & Greef, R. (1996). High aspect ratio silicon pillars fabricated by electrochemical etching and oxidation of macroporous silicon. Thin Solid Films, 276(1-2), 29-31. doi:10.1016/0040-6090(95)08042-2

Chernienko, A. V., Astrova, E. V., & Zharova, Y. A. (2013). Zigzag structures obtained by anisotropic etching of macroporous silicon. Technical Physics Letters, 39(11), 990-993. doi:10.1134/s1063785013110175

Ponomarev, E. A., & Lévy-Clément, C. (2000). Journal of Porous Materials, 7(1/3), 51-56. doi:10.1023/a:1009690521403

Haldar, S., De, A., Chakraborty, S., Ghosh, S., & Ghanta, U. (2014). Effect of Dimethylformamide, Current Density and Resistivity on Pore Geometry in P-type Macroporous Silicon. Procedia Materials Science, 5, 764-771. doi:10.1016/j.mspro.2014.07.326

Rasband W. S. , U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997.

Mawhinney, D. B., Glass, J. A., & Yates, J. T. (1997). FTIR Study of the Oxidation of Porous Silicon. The Journal of Physical Chemistry B, 101(7), 1202-1206. doi:10.1021/jp963322r

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record