- -

Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martín-Sánchez, David es_ES
dc.contributor.author Ponce-Alcántara, Salvador es_ES
dc.contributor.author Martinez-Perez, Paula es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-04-06T08:57:18Z
dc.date.available 2020-04-06T08:57:18Z
dc.date.issued 2019-01-03 es_ES
dc.identifier.issn 0013-4651 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140238
dc.description.abstract [EN] Tuning the pore diameter of porous silicon films is essential for some applications such as biosensing, where the pore size can be used for filtering analytes or to control the biofunctionalization of its walls. However, macropore (>50nm) formation on p-type silicon is not yet fully controlled due to its strong dependence on resistivity. Electrochemical etching of heavily doped p-type silicon usually forms micropores (<5nm), but it has been found that bigger sizes can be achieved by adding an organic solvent to the electrolyte. In this work, we compare the results obtained when adding dimethylformamide (DMF) and dimethylsulfoxide (DMSO) to the electrolyte as well as the effect of a post-treatment of the sample with potasium hydroxide (KOH) and sodium hydroxide (NaOH) for macropore formation in p-type silicon with resistivities between 0.001 and 10ohm· cm, achieving pore sizes from 5 to 100nm. es_ES
dc.description.sponsorship The authors acknowledge the funding from the Spanish government through the project TEC2015-63838-C3-1-R-OPTONANOSENS. es_ES
dc.language Inglés es_ES
dc.publisher The Electrochemical Society es_ES
dc.relation.ispartof Journal of The Electrochemical Society es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Porous silicon es_ES
dc.subject Macropore es_ES
dc.subject DMF es_ES
dc.subject KOH es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1149/2.0051902jes es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Martín-Sánchez, D.; Ponce-Alcántara, S.; Martinez-Perez, P.; García-Rupérez, J. (2019). Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon. Journal of The Electrochemical Society. 166(2):B9-B12. https://doi.org/10.1149/2.0051902jes es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1149/2.0051902jes es_ES
dc.description.upvformatpinicio B9 es_ES
dc.description.upvformatpfin B12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 166 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\374973 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters, 57(10), 1046-1048. doi:10.1063/1.103561 es_ES
dc.description.references Dhanekar, S., & Jain, S. (2013). Porous silicon biosensor: Current status. Biosensors and Bioelectronics, 41, 54-64. doi:10.1016/j.bios.2012.09.045 es_ES
dc.description.references Pacholski, C. (2013). Photonic Crystal Sensors Based on Porous Silicon. Sensors, 13(4), 4694-4713. doi:10.3390/s130404694 es_ES
dc.description.references Hutter, T., Horesh, M., & Ruschin, S. (2011). Method for increasing reliability in gas detection based on indicator gradient in a sensor array. Sensors and Actuators B: Chemical, 152(1), 29-36. doi:10.1016/j.snb.2010.09.058 es_ES
dc.description.references Mariani, S., Strambini, L. M., & Barillaro, G. (2016). Femtomole Detection of Proteins Using a Label-Free Nanostructured Porous Silicon Interferometer for Perspective Ultrasensitive Biosensing. Analytical Chemistry, 88(17), 8502-8509. doi:10.1021/acs.analchem.6b01228 es_ES
dc.description.references Caroselli, R., Ponce-Alcántara, S., Quilez, F. P., Sánchez, D. M., Morán, L. T., Barres, A. G., … García-Rupérez, J. (2017). Experimental study of the sensitivity of a porous silicon ring resonator sensor using continuous in-flow measurements. Optics Express, 25(25), 31651. doi:10.1364/oe.25.031651 es_ES
dc.description.references Ashuri, M., He, Q., & Shaw, L. L. (2016). Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 8(1), 74-103. doi:10.1039/c5nr05116a es_ES
dc.description.references Ashuri, M., He, Q., Liu, Y., Zhang, K., Emani, S., Sawicki, M. S., … Shaw, L. L. (2016). Hollow Silicon Nanospheres Encapsulated with a Thin Carbon Shell: An Electrochemical Study. Electrochimica Acta, 215, 126-141. doi:10.1016/j.electacta.2016.08.059 es_ES
dc.description.references Ashuri, M., He, Q., Liu, Y., Emani, S., & Shaw, L. L. (2017). Synthesis and performance of nanostructured silicon/graphite composites with a thin carbon shell and engineered voids. Electrochimica Acta, 258, 274-283. doi:10.1016/j.electacta.2017.10.198 es_ES
dc.description.references Ashuri, M., He, Q., Zhang, K., Emani, S., & Shaw, L. L. (2016). Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles. Journal of Sol-Gel Science and Technology, 82(1), 201-213. doi:10.1007/s10971-016-4265-z es_ES
dc.description.references Liu, N., Huo, K., McDowell, M. T., Zhao, J., & Cui, Y. (2013). Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports, 3(1). doi:10.1038/srep01919 es_ES
dc.description.references Yi, R., Dai, F., Gordin, M. L., Chen, S., & Wang, D. (2012). Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials, 3(3), 295-300. doi:10.1002/aenm.201200857 es_ES
dc.description.references Föll, H., Christophersen, M., Carstensen, J., & Hasse, G. (2002). Formation and application of porous silicon. Materials Science and Engineering: R: Reports, 39(4), 93-141. doi:10.1016/s0927-796x(02)00090-6 es_ES
dc.description.references Zhang G. X. , in Modern Aspects of Electrochemistry, Vayenas C. Gamboa-Adelco M. E. , Springer, Boston, USA, (2006). es_ES
dc.description.references Canham L. T. , in Handbook of porous silicon, Canham L. T. , Springer International Publishing, Switzerland (2014). es_ES
dc.description.references Lehmann, V., & Föll, H. (1990). Formation Mechanism and Properties of Electrochemically Etched Trenches in n‐Type Silicon. Journal of The Electrochemical Society, 137(2), 653-659. doi:10.1149/1.2086525 es_ES
dc.description.references Lehmann, V., & Ronnebeck, S. (1999). The Physics of Macropore Formation in Low‐Doped p‐Type Silicon. Journal of The Electrochemical Society, 146(8), 2968-2975. doi:10.1149/1.1392037 es_ES
dc.description.references Lehmann, V., Stengl, R., & Luigart, A. (2000). On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials Science and Engineering: B, 69-70, 11-22. doi:10.1016/s0921-5107(99)00286-x es_ES
dc.description.references Mariani, S., Pino, L., Strambini, L. M., Tedeschi, L., & Barillaro, G. (2016). 10 000-Fold Improvement in Protein Detection Using Nanostructured Porous Silicon Interferometric Aptasensors. ACS Sensors, 1(12), 1471-1479. doi:10.1021/acssensors.6b00634 es_ES
dc.description.references Lau, H. ., Parker, G. ., & Greef, R. (1996). High aspect ratio silicon pillars fabricated by electrochemical etching and oxidation of macroporous silicon. Thin Solid Films, 276(1-2), 29-31. doi:10.1016/0040-6090(95)08042-2 es_ES
dc.description.references Chernienko, A. V., Astrova, E. V., & Zharova, Y. A. (2013). Zigzag structures obtained by anisotropic etching of macroporous silicon. Technical Physics Letters, 39(11), 990-993. doi:10.1134/s1063785013110175 es_ES
dc.description.references Ponomarev, E. A., & Lévy-Clément, C. (2000). Journal of Porous Materials, 7(1/3), 51-56. doi:10.1023/a:1009690521403 es_ES
dc.description.references Haldar, S., De, A., Chakraborty, S., Ghosh, S., & Ghanta, U. (2014). Effect of Dimethylformamide, Current Density and Resistivity on Pore Geometry in P-type Macroporous Silicon. Procedia Materials Science, 5, 764-771. doi:10.1016/j.mspro.2014.07.326 es_ES
dc.description.references Rasband W. S. , U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997. es_ES
dc.description.references Mawhinney, D. B., Glass, J. A., & Yates, J. T. (1997). FTIR Study of the Oxidation of Porous Silicon. The Journal of Physical Chemistry B, 101(7), 1202-1206. doi:10.1021/jp963322r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem