- -

Single-channel bimodal interferometric sensor using subwavelength structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Single-channel bimodal interferometric sensor using subwavelength structures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torrijos-Morán, Luis es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2020-04-06T08:57:20Z
dc.date.available 2020-04-06T08:57:20Z
dc.date.issued 2019-03-18 es_ES
dc.identifier.issn 1094-4087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140240
dc.description © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. es_ES
dc.description.abstract [EN] A novel configuration of photonic sensors based on a single-channel bimodal interferometer is proposed. The design consists of a subwavelength grating (SWG) periodic structure supporting two dispersive TE-like modes that interfere at the output to create fringes in the transmission spectrum. Dispersion relations of the bimodal periodic structures have been computed in order to study the sensing performance, obtaining a theoretical bulk sensitivity of ~1300nm/RIU and a surface sensitivity of ~6.1nm/nm. Finite-Difference Time Domain (FDTD) analysis has been also carried out in order to confirm the previously obtained sensitivity results, thus showing a perfect agreement between theoretical modelling and simulation. es_ES
dc.description.sponsorship European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Subwavelength structures es_ES
dc.subject Modal interferometry es_ES
dc.subject Photonic integrated sensors es_ES
dc.subject Refractive index sensing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Single-channel bimodal interferometric sensor using subwavelength structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.27.008168 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Torrijos-Morán, L.; García-Rupérez, J. (2019). Single-channel bimodal interferometric sensor using subwavelength structures. Optics Express. 27(6):8168-8179. https://doi.org/10.1364/OE.27.008168 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OE.27.008168 es_ES
dc.description.upvformatpinicio 8168 es_ES
dc.description.upvformatpfin 8179 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\381359 es_ES
dc.description.references Topol’ančik, J., Bhattacharya, P., Sabarinathan, J., & Yu, P.-C. (2003). Fluid detection with photonic crystal-based multichannel waveguides. Applied Physics Letters, 82(8), 1143-1145. doi:10.1063/1.1554772 es_ES
dc.description.references Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143-149. doi:10.1038/386143a0 es_ES
dc.description.references Soljačić, M., Johnson, S. G., Fan, S., Ibanescu, M., Ippen, E., & Joannopoulos, J. D. (2002). Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, 19(9), 2052. doi:10.1364/josab.19.002052 es_ES
dc.description.references Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 es_ES
dc.description.references Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M., & Girolami, G. (2004). Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters, 29(10), 1093. doi:10.1364/ol.29.001093 es_ES
dc.description.references Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169 es_ES
dc.description.references Castelló, J. G., Toccafondo, V., Pérez-Millán, P., Losilla, N. S., Cruz, J. L., Andrés, M. V., & García-Rupérez, J. (2011). Real-time and low-cost sensing technique based on photonic bandgap structures. Optics Letters, 36(14), 2707. doi:10.1364/ol.36.002707 es_ES
dc.description.references Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7 es_ES
dc.description.references Halir, R., Cheben, P., Luque‐González, J. M., Sarmiento‐Merenguel, J. D., Schmid, J. H., Wangüemert‐Pérez, G., … Molina‐Fernández, Í. (2016). Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial. Laser & Photonics Reviews, 10(6), 1039-1046. doi:10.1002/lpor.201600213 es_ES
dc.description.references Benedikovic, D., Berciano, M., Alonso-Ramos, C., Le Roux, X., Cassan, E., Marris-Morini, D., & Vivien, L. (2017). Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Optics Express, 25(16), 19468. doi:10.1364/oe.25.019468 es_ES
dc.description.references Luque-González, J. M., Herrero-Bermello, A., Ortega-Moñux, A., Molina-Fernández, Í., Velasco, A. V., Cheben, P., … Halir, R. (2018). Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Optics Letters, 43(19), 4691. doi:10.1364/ol.43.004691 es_ES
dc.description.references Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672 es_ES
dc.description.references Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., … Schmid, J. H. (2014). Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Optics Letters, 39(15), 4442. doi:10.1364/ol.39.004442 es_ES
dc.description.references Wangüemert-Pérez, J. G., Hadij-ElHouati, A., Sánchez-Postigo, A., Leuermann, J., Xu, D.-X., Cheben, P., … Molina-Fernández, Í. (2019). [INVITED] Subwavelength structures for silicon photonics biosensing. Optics & Laser Technology, 109, 437-448. doi:10.1016/j.optlastec.2018.07.071 es_ES
dc.description.references Kozma, P., Kehl, F., Ehrentreich-Förster, E., Stamm, C., & Bier, F. F. (2014). Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosensors and Bioelectronics, 58, 287-307. doi:10.1016/j.bios.2014.02.049 es_ES
dc.description.references Liu, Q., Tu, X., Kim, K. W., Kee, J. S., Shin, Y., Han, K., … Park, M. K. (2013). Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sensors and Actuators B: Chemical, 188, 681-688. doi:10.1016/j.snb.2013.07.053 es_ES
dc.description.references Sarkar, D., Gunda, N. S. K., Jamal, I., & Mitra, S. K. (2014). Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes. Biomedical Microdevices, 16(4), 509-520. doi:10.1007/s10544-014-9853-5 es_ES
dc.description.references Levy, R., & Ruschin, S. (2008). Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 16(25), 20516. doi:10.1364/oe.16.020516 es_ES
dc.description.references Levy, R., Ruschin, S., & Goldring, D. (2009). Critical sensitivity effect in an interferometer sensor. Optics Letters, 34(19), 3023. doi:10.1364/ol.34.003023 es_ES
dc.description.references Levy, R., & Ruschin, S. (2009). Design of a Single-Channel Modal Interferometer Waveguide Sensor. IEEE Sensors Journal, 9(2), 146-1. doi:10.1109/jsen.2008.2011075 es_ES
dc.description.references Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734 es_ES
dc.description.references Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054e es_ES
dc.description.references Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 es_ES
dc.description.references Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368 es_ES
dc.description.references Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., … Hall, T. J. (2010). Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Optics Express, 18(19), 20251. doi:10.1364/oe.18.020251 es_ES
dc.description.references Johnson, S., & Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8(3), 173. doi:10.1364/oe.8.000173 es_ES
dc.description.references Zhang, W., Serna, S., Le Roux, X., Vivien, L., & Cassan, E. (2016). Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Optics Letters, 41(3), 532. doi:10.1364/ol.41.000532 es_ES
dc.description.references Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285 es_ES
dc.description.references Luan, E., Yun, H., Laplatine, L., Dattner, Y., Ratner, D. M., Cheung, K. C., & Chrostowski, L. (2019). Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 1-11. doi:10.1109/jstqe.2018.2821842 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem