Mostrar el registro sencillo del ítem
dc.contributor.author | Torrijos-Morán, Luis | es_ES |
dc.contributor.author | García-Rupérez, Jaime | es_ES |
dc.date.accessioned | 2020-04-06T08:57:20Z | |
dc.date.available | 2020-04-06T08:57:20Z | |
dc.date.issued | 2019-03-18 | es_ES |
dc.identifier.issn | 1094-4087 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140240 | |
dc.description | © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. | es_ES |
dc.description.abstract | [EN] A novel configuration of photonic sensors based on a single-channel bimodal interferometer is proposed. The design consists of a subwavelength grating (SWG) periodic structure supporting two dispersive TE-like modes that interfere at the output to create fringes in the transmission spectrum. Dispersion relations of the bimodal periodic structures have been computed in order to study the sensing performance, obtaining a theoretical bulk sensitivity of ~1300nm/RIU and a surface sensitivity of ~6.1nm/nm. Finite-Difference Time Domain (FDTD) analysis has been also carried out in order to confirm the previously obtained sensitivity results, thus showing a perfect agreement between theoretical modelling and simulation. | es_ES |
dc.description.sponsorship | European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Subwavelength structures | es_ES |
dc.subject | Modal interferometry | es_ES |
dc.subject | Photonic integrated sensors | es_ES |
dc.subject | Refractive index sensing | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Single-channel bimodal interferometric sensor using subwavelength structures | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.27.008168 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Torrijos-Morán, L.; García-Rupérez, J. (2019). Single-channel bimodal interferometric sensor using subwavelength structures. Optics Express. 27(6):8168-8179. https://doi.org/10.1364/OE.27.008168 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OE.27.008168 | es_ES |
dc.description.upvformatpinicio | 8168 | es_ES |
dc.description.upvformatpfin | 8179 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\381359 | es_ES |
dc.description.references | Topol’ančik, J., Bhattacharya, P., Sabarinathan, J., & Yu, P.-C. (2003). Fluid detection with photonic crystal-based multichannel waveguides. Applied Physics Letters, 82(8), 1143-1145. doi:10.1063/1.1554772 | es_ES |
dc.description.references | Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143-149. doi:10.1038/386143a0 | es_ES |
dc.description.references | Soljačić, M., Johnson, S. G., Fan, S., Ibanescu, M., Ippen, E., & Joannopoulos, J. D. (2002). Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, 19(9), 2052. doi:10.1364/josab.19.002052 | es_ES |
dc.description.references | Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 | es_ES |
dc.description.references | Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M., & Girolami, G. (2004). Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters, 29(10), 1093. doi:10.1364/ol.29.001093 | es_ES |
dc.description.references | Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169 | es_ES |
dc.description.references | Castelló, J. G., Toccafondo, V., Pérez-Millán, P., Losilla, N. S., Cruz, J. L., Andrés, M. V., & García-Rupérez, J. (2011). Real-time and low-cost sensing technique based on photonic bandgap structures. Optics Letters, 36(14), 2707. doi:10.1364/ol.36.002707 | es_ES |
dc.description.references | Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7 | es_ES |
dc.description.references | Halir, R., Cheben, P., Luque‐González, J. M., Sarmiento‐Merenguel, J. D., Schmid, J. H., Wangüemert‐Pérez, G., … Molina‐Fernández, Í. (2016). Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial. Laser & Photonics Reviews, 10(6), 1039-1046. doi:10.1002/lpor.201600213 | es_ES |
dc.description.references | Benedikovic, D., Berciano, M., Alonso-Ramos, C., Le Roux, X., Cassan, E., Marris-Morini, D., & Vivien, L. (2017). Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Optics Express, 25(16), 19468. doi:10.1364/oe.25.019468 | es_ES |
dc.description.references | Luque-González, J. M., Herrero-Bermello, A., Ortega-Moñux, A., Molina-Fernández, Í., Velasco, A. V., Cheben, P., … Halir, R. (2018). Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Optics Letters, 43(19), 4691. doi:10.1364/ol.43.004691 | es_ES |
dc.description.references | Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672 | es_ES |
dc.description.references | Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., … Schmid, J. H. (2014). Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Optics Letters, 39(15), 4442. doi:10.1364/ol.39.004442 | es_ES |
dc.description.references | Wangüemert-Pérez, J. G., Hadij-ElHouati, A., Sánchez-Postigo, A., Leuermann, J., Xu, D.-X., Cheben, P., … Molina-Fernández, Í. (2019). [INVITED] Subwavelength structures for silicon photonics biosensing. Optics & Laser Technology, 109, 437-448. doi:10.1016/j.optlastec.2018.07.071 | es_ES |
dc.description.references | Kozma, P., Kehl, F., Ehrentreich-Förster, E., Stamm, C., & Bier, F. F. (2014). Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosensors and Bioelectronics, 58, 287-307. doi:10.1016/j.bios.2014.02.049 | es_ES |
dc.description.references | Liu, Q., Tu, X., Kim, K. W., Kee, J. S., Shin, Y., Han, K., … Park, M. K. (2013). Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sensors and Actuators B: Chemical, 188, 681-688. doi:10.1016/j.snb.2013.07.053 | es_ES |
dc.description.references | Sarkar, D., Gunda, N. S. K., Jamal, I., & Mitra, S. K. (2014). Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes. Biomedical Microdevices, 16(4), 509-520. doi:10.1007/s10544-014-9853-5 | es_ES |
dc.description.references | Levy, R., & Ruschin, S. (2008). Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 16(25), 20516. doi:10.1364/oe.16.020516 | es_ES |
dc.description.references | Levy, R., Ruschin, S., & Goldring, D. (2009). Critical sensitivity effect in an interferometer sensor. Optics Letters, 34(19), 3023. doi:10.1364/ol.34.003023 | es_ES |
dc.description.references | Levy, R., & Ruschin, S. (2009). Design of a Single-Channel Modal Interferometer Waveguide Sensor. IEEE Sensors Journal, 9(2), 146-1. doi:10.1109/jsen.2008.2011075 | es_ES |
dc.description.references | Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734 | es_ES |
dc.description.references | Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054e | es_ES |
dc.description.references | Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 | es_ES |
dc.description.references | Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368 | es_ES |
dc.description.references | Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., … Hall, T. J. (2010). Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Optics Express, 18(19), 20251. doi:10.1364/oe.18.020251 | es_ES |
dc.description.references | Johnson, S., & Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8(3), 173. doi:10.1364/oe.8.000173 | es_ES |
dc.description.references | Zhang, W., Serna, S., Le Roux, X., Vivien, L., & Cassan, E. (2016). Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Optics Letters, 41(3), 532. doi:10.1364/ol.41.000532 | es_ES |
dc.description.references | Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285 | es_ES |
dc.description.references | Luan, E., Yun, H., Laplatine, L., Dattner, Y., Ratner, D. M., Cheung, K. C., & Chrostowski, L. (2019). Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 1-11. doi:10.1109/jstqe.2018.2821842 | es_ES |