- -

Single-channel bimodal interferometric sensor using subwavelength structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Single-channel bimodal interferometric sensor using subwavelength structures

Mostrar el registro completo del ítem

Torrijos-Morán, L.; García-Rupérez, J. (2019). Single-channel bimodal interferometric sensor using subwavelength structures. Optics Express. 27(6):8168-8179. https://doi.org/10.1364/OE.27.008168

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140240

Ficheros en el ítem

Metadatos del ítem

Título: Single-channel bimodal interferometric sensor using subwavelength structures
Autor: Torrijos-Morán, Luis García-Rupérez, Jaime
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] A novel configuration of photonic sensors based on a single-channel bimodal interferometer is proposed. The design consists of a subwavelength grating (SWG) periodic structure supporting two dispersive TE-like modes ...[+]
Palabras clave: Subwavelength structures , Modal interferometry , Photonic integrated sensors , Refractive index sensing
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.27.008168
Editorial:
The Optical Society
Versión del editor: https://doi.org/10.1364/OE.27.008168
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/634013/EU/Advanced nanophotonic point-of-care analysis device for fast and early diagnosis of cardiovascular diseases/
Descripción: © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Agradecimientos:
European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project).
Tipo: Artículo

References

Topol’ančik, J., Bhattacharya, P., Sabarinathan, J., & Yu, P.-C. (2003). Fluid detection with photonic crystal-based multichannel waveguides. Applied Physics Letters, 82(8), 1143-1145. doi:10.1063/1.1554772

Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143-149. doi:10.1038/386143a0

Soljačić, M., Johnson, S. G., Fan, S., Ibanescu, M., Ippen, E., & Joannopoulos, J. D. (2002). Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, 19(9), 2052. doi:10.1364/josab.19.002052 [+]
Topol’ančik, J., Bhattacharya, P., Sabarinathan, J., & Yu, P.-C. (2003). Fluid detection with photonic crystal-based multichannel waveguides. Applied Physics Letters, 82(8), 1143-1145. doi:10.1063/1.1554772

Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143-149. doi:10.1038/386143a0

Soljačić, M., Johnson, S. G., Fan, S., Ibanescu, M., Ippen, E., & Joannopoulos, J. D. (2002). Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, 19(9), 2052. doi:10.1364/josab.19.002052

Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145

Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M., & Girolami, G. (2004). Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters, 29(10), 1093. doi:10.1364/ol.29.001093

Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169

Castelló, J. G., Toccafondo, V., Pérez-Millán, P., Losilla, N. S., Cruz, J. L., Andrés, M. V., & García-Rupérez, J. (2011). Real-time and low-cost sensing technique based on photonic bandgap structures. Optics Letters, 36(14), 2707. doi:10.1364/ol.36.002707

Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7

Halir, R., Cheben, P., Luque‐González, J. M., Sarmiento‐Merenguel, J. D., Schmid, J. H., Wangüemert‐Pérez, G., … Molina‐Fernández, Í. (2016). Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial. Laser & Photonics Reviews, 10(6), 1039-1046. doi:10.1002/lpor.201600213

Benedikovic, D., Berciano, M., Alonso-Ramos, C., Le Roux, X., Cassan, E., Marris-Morini, D., & Vivien, L. (2017). Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Optics Express, 25(16), 19468. doi:10.1364/oe.25.019468

Luque-González, J. M., Herrero-Bermello, A., Ortega-Moñux, A., Molina-Fernández, Í., Velasco, A. V., Cheben, P., … Halir, R. (2018). Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Optics Letters, 43(19), 4691. doi:10.1364/ol.43.004691

Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672

Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., … Schmid, J. H. (2014). Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Optics Letters, 39(15), 4442. doi:10.1364/ol.39.004442

Wangüemert-Pérez, J. G., Hadij-ElHouati, A., Sánchez-Postigo, A., Leuermann, J., Xu, D.-X., Cheben, P., … Molina-Fernández, Í. (2019). [INVITED] Subwavelength structures for silicon photonics biosensing. Optics & Laser Technology, 109, 437-448. doi:10.1016/j.optlastec.2018.07.071

Kozma, P., Kehl, F., Ehrentreich-Förster, E., Stamm, C., & Bier, F. F. (2014). Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosensors and Bioelectronics, 58, 287-307. doi:10.1016/j.bios.2014.02.049

Liu, Q., Tu, X., Kim, K. W., Kee, J. S., Shin, Y., Han, K., … Park, M. K. (2013). Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sensors and Actuators B: Chemical, 188, 681-688. doi:10.1016/j.snb.2013.07.053

Sarkar, D., Gunda, N. S. K., Jamal, I., & Mitra, S. K. (2014). Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes. Biomedical Microdevices, 16(4), 509-520. doi:10.1007/s10544-014-9853-5

Levy, R., & Ruschin, S. (2008). Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 16(25), 20516. doi:10.1364/oe.16.020516

Levy, R., Ruschin, S., & Goldring, D. (2009). Critical sensitivity effect in an interferometer sensor. Optics Letters, 34(19), 3023. doi:10.1364/ol.34.003023

Levy, R., & Ruschin, S. (2009). Design of a Single-Channel Modal Interferometer Waveguide Sensor. IEEE Sensors Journal, 9(2), 146-1. doi:10.1109/jsen.2008.2011075

Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734

Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054e

Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162

Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368

Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., … Hall, T. J. (2010). Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Optics Express, 18(19), 20251. doi:10.1364/oe.18.020251

Johnson, S., & Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8(3), 173. doi:10.1364/oe.8.000173

Zhang, W., Serna, S., Le Roux, X., Vivien, L., & Cassan, E. (2016). Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Optics Letters, 41(3), 532. doi:10.1364/ol.41.000532

Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285

Luan, E., Yun, H., Laplatine, L., Dattner, Y., Ratner, D. M., Cheung, K. C., & Chrostowski, L. (2019). Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 1-11. doi:10.1109/jstqe.2018.2821842

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem