Blazkova, S., & Beven, K. (2004). Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. Journal of Hydrology, 292(1-4), 153-172. doi:10.1016/j.jhydrol.2003.12.025
Mo, C., Mo, G., Yang, Q., Ruan, Y., Jiang, Q., & Jin, J. (2018). A quantitative model for danger degree evaluation of staged operation of earth dam reservoir in flood season and its application. Water Science and Engineering, 11(1), 81-87. doi:10.1016/j.wse.2017.07.001
Liu, Z., Xu, X., Cheng, J., Wen, T., & Niu, J. (2018). Hydrological risk analysis of dam overtopping using bivariate statistical approach: a case study from Geheyan Reservoir, China. Stochastic Environmental Research and Risk Assessment, 32(9), 2515-2525. doi:10.1007/s00477-018-1550-0
[+]
Blazkova, S., & Beven, K. (2004). Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. Journal of Hydrology, 292(1-4), 153-172. doi:10.1016/j.jhydrol.2003.12.025
Mo, C., Mo, G., Yang, Q., Ruan, Y., Jiang, Q., & Jin, J. (2018). A quantitative model for danger degree evaluation of staged operation of earth dam reservoir in flood season and its application. Water Science and Engineering, 11(1), 81-87. doi:10.1016/j.wse.2017.07.001
Liu, Z., Xu, X., Cheng, J., Wen, T., & Niu, J. (2018). Hydrological risk analysis of dam overtopping using bivariate statistical approach: a case study from Geheyan Reservoir, China. Stochastic Environmental Research and Risk Assessment, 32(9), 2515-2525. doi:10.1007/s00477-018-1550-0
Goodarzi, E., Mirzaei, M., Shui, L. T., & Ziaei, M. (2011). Evaluation dam overtopping risk based on univariate and bivariate flood frequency analysis. Hydrology and Earth System Sciences Discussions, 8(6), 9757-9796. doi:10.5194/hessd-8-9757-2011
Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506-1515. doi:10.1080/02626667.2012.726357
Rizwan, M., Guo, S., Yin, J., & Xiong, F. (2019). Deriving Design Flood Hydrographs Based on Copula Function: A Case Study in Pakistan. Water, 11(8), 1531. doi:10.3390/w11081531
Aranda, J., & García-Bartual, R. (2018). Synthetic Hydrographs Generation Downstream of a River Junction Using a Copula Approach for Hydrological Risk Assessment in Large Dams. Water, 10(11), 1570. doi:10.3390/w10111570
Waylen, P., & Woo, M. (1982). Prediction of annual floods generated by mixed processes. Water Resources Research, 18(4), 1283-1286. doi:10.1029/wr018i004p01283
Villarini, G., & Smith, J. A. (2010). Flood peak distributions for the eastern United States. Water Resources Research, 46(6). doi:10.1029/2009wr008395
Smith, J. A., Villarini, G., & Baeck, M. L. (2011). Mixture Distributions and the Hydroclimatology of Extreme Rainfall and Flooding in the Eastern United States. Journal of Hydrometeorology, 12(2), 294-309. doi:10.1175/2010jhm1242.1
Strupczewski, W. G., Kochanek, K., Bogdanowicz, E., & Markiewicz, I. (2011). On seasonal approach to flood frequency modelling. Part I: Two-component distribution revisited. Hydrological Processes, 26(5), 705-716. doi:10.1002/hyp.8179
Iacobellis, V., Fiorentino, M., Gioia, A., & Manfreda, S. (2010). Best Fit and Selection of Theoretical Flood Frequency Distributions Based on Different Runoff Generation Mechanisms. Water, 2(2), 239-256. doi:10.3390/w2020239
Michele, C. D., & Salvadori, G. (2002). On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. Journal of Hydrology, 262(1-4), 245-258. doi:10.1016/s0022-1694(02)00025-2
Yan, L., Xiong, L., Ruan, G., Xu, C.-Y., Yan, P., & Liu, P. (2019). Reducing uncertainty of design floods of two-component mixture distributions by utilizing flood timescale to classify flood types in seasonally snow covered region. Journal of Hydrology, 574, 588-608. doi:10.1016/j.jhydrol.2019.04.056
Lang, M., Ouarda, T. B. M. J., & Bobée, B. (1999). Towards operational guidelines for over-threshold modeling. Journal of Hydrology, 225(3-4), 103-117. doi:10.1016/s0022-1694(99)00167-5
Ferreira, A., & de Haan, L. (2015). On the block maxima method in extreme value theory: PWM estimators. The Annals of Statistics, 43(1), 276-298. doi:10.1214/14-aos1280
Dupuis, D. J. (1996). Estimating the probability of obtaining nonfeasible parameter estimates of the generalized pareto distribution. Journal of Statistical Computation and Simulation, 54(1-3), 197-209. doi:10.1080/00949659608811728
Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251-261. doi:10.1080/00401706.1985.10488049
Serinaldi, F. (2007). Analysis of inter-gauge dependence by Kendall’s τK, upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stochastic Environmental Research and Risk Assessment, 22(6), 671-688. doi:10.1007/s00477-007-0176-4
Dupuis, D. J. (2007). Using Copulas in Hydrology: Benefits, Cautions, and Issues. Journal of Hydrologic Engineering, 12(4), 381-393. doi:10.1061/(asce)1084-0699(2007)12:4(381)
Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 44(6), 1096-1127. doi:10.1214/07-aihp148
Genest, C., Kojadinovic, I., Nešlehová, J., & Yan, J. (2011). A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli, 17(1), 253-275. doi:10.3150/10-bej279
Caperaa, P. (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84(3), 567-577. doi:10.1093/biomet/84.3.567
Bhunya, P. K., Berndtsson, R., Ojha, C. S. P., & Mishra, S. K. (2007). Suitability of Gamma, Chi-square, Weibull, and Beta distributions as synthetic unit hydrographs. Journal of Hydrology, 334(1-2), 28-38. doi:10.1016/j.jhydrol.2006.09.022
Nadarajah, S. (2007). Probability models for unit hydrograph derivation. Journal of Hydrology, 344(3-4), 185-189. doi:10.1016/j.jhydrol.2007.07.004
Carvajal, C., Peyras, L., Arnaud, P., Boissier, D., & Royet, P. (2009). Probabilistic Modeling of Floodwater Level for Dam Reservoirs. Journal of Hydrologic Engineering, 14(3), 223-232. doi:10.1061/(asce)1084-0699(2009)14:3(223)
Yevdjevich, V. M. (1959). Analytical integration of the differential equation for water storage. Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, 63B(1), 43. doi:10.6028/jres.063b.007
Gioia, A. (2016). Reservoir Routing on Double-Peak Design Flood. Water, 8(12), 553. doi:10.3390/w8120553
Rong, Zhang, Peng, & Feng. (2019). Three-Dimensional Numerical Simulation of Dam Discharge and Flood Routing in Wudu Reservoir. Water, 11(10), 2157. doi:10.3390/w11102157
Todorovic, P., & Rousselle, J. (1971). Some Problems of Flood Analysis. Water Resources Research, 7(5), 1144-1150. doi:10.1029/wr007i005p01144
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., … Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588-590. doi:10.1126/science.aan2506
Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19(5), 2247-2260. doi:10.5194/hess-19-2247-2015
Soriano, E., Mediero, L., & Garijo, C. (2018). Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Proceedings, 7(1), 14. doi:10.3390/ecws-3-05809
[-]