- -

Effect of Seasonality on the Quantiles Estimation of  Maximum Floodwater Levels in a Reservoir and  Maximum Outflows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Seasonality on the Quantiles Estimation of  Maximum Floodwater Levels in a Reservoir and  Maximum Outflows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aranda Domingo, José Ángel es_ES
dc.contributor.author García-Bartual, Rafael es_ES
dc.date.accessioned 2020-04-08T05:58:52Z
dc.date.available 2020-04-08T05:58:52Z
dc.date.issued 2020-02-13 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140504
dc.description.abstract [EN] Certain  relevant  variables  for  dam  safety  and  downstream  safety  assessments  are  analyzed using a stochastic approach. In particular, a method to estimate quantiles of maximum  outflow in a dam spillway and maximum water level reached in the reservoir during a flood event  is presented. The hydrological system analyzed herein is a small mountain catchment in north  Spain, whose main river is a tributary of Ebro river. The ancient Foradada dam is located in this  catchment. This dam has no gates, so that flood routing operation results from simple consideration  of fixed crest spillway hydraulics. In such case, both mentioned variables (maximum outflow and  maximum reservoir water level) are basically derived variables that depend on flood hydrograph  characteristics and the reservoir¿s initial water level. A Monte Carlo approach is performed to  generate very large samples of synthetic hydrographs and previous reservoir levels. The use of  extreme value copulas allows the ensembles to preserve statistical properties of historical samples  and the observed empirical correlations. Apart from the classical approach based on annual periods,  the modelling strategy is also applied differentiating two subperiods or seasons (i.e., summer and  winter). This allows to quantify the return period distortion introduced when seasonality is ignored  in the statistical analysis of the two relevant variables selected for hydrological risk assessment.  Results indicate significant deviations for return periods over 125 years. For the analyzed case study,  ignoring seasonal statistics and trends, yields to maximum outflows underestimation of 18% for T  = 500 years and 29% for T = 1000 years were obtained. es_ES
dc.description.sponsorship The authors wish to acknowledge support from Confederación Hidrográfica del Ebro es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Peaks over threshold (POT) es_ES
dc.subject  Extreme value copula es_ES
dc.subject  Design flow hydrograph es_ES
dc.subject  Seasonality es_ES
dc.subject   Dam routing  es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Effect of Seasonality on the Quantiles Estimation of  Maximum Floodwater Levels in a Reservoir and  Maximum Outflows es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w12020519 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Aranda Domingo, JÁ.; García-Bartual, R. (2020). Effect of Seasonality on the Quantiles Estimation of  Maximum Floodwater Levels in a Reservoir and  Maximum Outflows. Water. 12(519):1-24. https://doi.org/10.3390/w12020519 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w12020519 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 519 es_ES
dc.relation.pasarela S\402958 es_ES
dc.description.references Blazkova, S., & Beven, K. (2004). Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. Journal of Hydrology, 292(1-4), 153-172. doi:10.1016/j.jhydrol.2003.12.025 es_ES
dc.description.references Mo, C., Mo, G., Yang, Q., Ruan, Y., Jiang, Q., & Jin, J. (2018). A quantitative model for danger degree evaluation of staged operation of earth dam reservoir in flood season and its application. Water Science and Engineering, 11(1), 81-87. doi:10.1016/j.wse.2017.07.001 es_ES
dc.description.references Liu, Z., Xu, X., Cheng, J., Wen, T., & Niu, J. (2018). Hydrological risk analysis of dam overtopping using bivariate statistical approach: a case study from Geheyan Reservoir, China. Stochastic Environmental Research and Risk Assessment, 32(9), 2515-2525. doi:10.1007/s00477-018-1550-0 es_ES
dc.description.references Goodarzi, E., Mirzaei, M., Shui, L. T., & Ziaei, M. (2011). Evaluation dam overtopping risk based on univariate and bivariate flood frequency analysis. Hydrology and Earth System Sciences Discussions, 8(6), 9757-9796. doi:10.5194/hessd-8-9757-2011 es_ES
dc.description.references Volpi, E., & Fiori, A. (2012). Design event selection in bivariate hydrological frequency analysis. Hydrological Sciences Journal, 57(8), 1506-1515. doi:10.1080/02626667.2012.726357 es_ES
dc.description.references Rizwan, M., Guo, S., Yin, J., & Xiong, F. (2019). Deriving Design Flood Hydrographs Based on Copula Function: A Case Study in Pakistan. Water, 11(8), 1531. doi:10.3390/w11081531 es_ES
dc.description.references Aranda, J., & García-Bartual, R. (2018). Synthetic Hydrographs Generation Downstream of a River Junction Using a Copula Approach for Hydrological Risk Assessment in Large Dams. Water, 10(11), 1570. doi:10.3390/w10111570 es_ES
dc.description.references Waylen, P., & Woo, M. (1982). Prediction of annual floods generated by mixed processes. Water Resources Research, 18(4), 1283-1286. doi:10.1029/wr018i004p01283 es_ES
dc.description.references Villarini, G., & Smith, J. A. (2010). Flood peak distributions for the eastern United States. Water Resources Research, 46(6). doi:10.1029/2009wr008395 es_ES
dc.description.references Smith, J. A., Villarini, G., & Baeck, M. L. (2011). Mixture Distributions and the Hydroclimatology of Extreme Rainfall and Flooding in the Eastern United States. Journal of Hydrometeorology, 12(2), 294-309. doi:10.1175/2010jhm1242.1 es_ES
dc.description.references Strupczewski, W. G., Kochanek, K., Bogdanowicz, E., & Markiewicz, I. (2011). On seasonal approach to flood frequency modelling. Part I: Two-component distribution revisited. Hydrological Processes, 26(5), 705-716. doi:10.1002/hyp.8179 es_ES
dc.description.references Iacobellis, V., Fiorentino, M., Gioia, A., & Manfreda, S. (2010). Best Fit and Selection of Theoretical Flood Frequency Distributions Based on Different Runoff Generation Mechanisms. Water, 2(2), 239-256. doi:10.3390/w2020239 es_ES
dc.description.references Michele, C. D., & Salvadori, G. (2002). On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. Journal of Hydrology, 262(1-4), 245-258. doi:10.1016/s0022-1694(02)00025-2 es_ES
dc.description.references Yan, L., Xiong, L., Ruan, G., Xu, C.-Y., Yan, P., & Liu, P. (2019). Reducing uncertainty of design floods of two-component mixture distributions by utilizing flood timescale to classify flood types in seasonally snow covered region. Journal of Hydrology, 574, 588-608. doi:10.1016/j.jhydrol.2019.04.056 es_ES
dc.description.references Lang, M., Ouarda, T. B. M. J., & Bobée, B. (1999). Towards operational guidelines for over-threshold modeling. Journal of Hydrology, 225(3-4), 103-117. doi:10.1016/s0022-1694(99)00167-5 es_ES
dc.description.references Ferreira, A., & de Haan, L. (2015). On the block maxima method in extreme value theory: PWM estimators. The Annals of Statistics, 43(1), 276-298. doi:10.1214/14-aos1280 es_ES
dc.description.references Dupuis, D. J. (1996). Estimating the probability of obtaining nonfeasible parameter estimates of the generalized pareto distribution. Journal of Statistical Computation and Simulation, 54(1-3), 197-209. doi:10.1080/00949659608811728 es_ES
dc.description.references Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251-261. doi:10.1080/00401706.1985.10488049 es_ES
dc.description.references Serinaldi, F. (2007). Analysis of inter-gauge dependence by Kendall’s τK, upper tail dependence coefficient, and 2-copulas with application to rainfall fields. Stochastic Environmental Research and Risk Assessment, 22(6), 671-688. doi:10.1007/s00477-007-0176-4 es_ES
dc.description.references Dupuis, D. J. (2007). Using Copulas in Hydrology: Benefits, Cautions, and Issues. Journal of Hydrologic Engineering, 12(4), 381-393. doi:10.1061/(asce)1084-0699(2007)12:4(381) es_ES
dc.description.references Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 44(6), 1096-1127. doi:10.1214/07-aihp148 es_ES
dc.description.references Genest, C., Kojadinovic, I., Nešlehová, J., & Yan, J. (2011). A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli, 17(1), 253-275. doi:10.3150/10-bej279 es_ES
dc.description.references Caperaa, P. (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84(3), 567-577. doi:10.1093/biomet/84.3.567 es_ES
dc.description.references Bhunya, P. K., Berndtsson, R., Ojha, C. S. P., & Mishra, S. K. (2007). Suitability of Gamma, Chi-square, Weibull, and Beta distributions as synthetic unit hydrographs. Journal of Hydrology, 334(1-2), 28-38. doi:10.1016/j.jhydrol.2006.09.022 es_ES
dc.description.references Nadarajah, S. (2007). Probability models for unit hydrograph derivation. Journal of Hydrology, 344(3-4), 185-189. doi:10.1016/j.jhydrol.2007.07.004 es_ES
dc.description.references Carvajal, C., Peyras, L., Arnaud, P., Boissier, D., & Royet, P. (2009). Probabilistic Modeling of Floodwater Level for Dam Reservoirs. Journal of Hydrologic Engineering, 14(3), 223-232. doi:10.1061/(asce)1084-0699(2009)14:3(223) es_ES
dc.description.references Yevdjevich, V. M. (1959). Analytical integration of the differential equation for water storage. Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics, 63B(1), 43. doi:10.6028/jres.063b.007 es_ES
dc.description.references Gioia, A. (2016). Reservoir Routing on Double-Peak Design Flood. Water, 8(12), 553. doi:10.3390/w8120553 es_ES
dc.description.references Rong, Zhang, Peng, & Feng. (2019). Three-Dimensional Numerical Simulation of Dam Discharge and Flood Routing in Wudu Reservoir. Water, 11(10), 2157. doi:10.3390/w11102157 es_ES
dc.description.references Todorovic, P., & Rousselle, J. (1971). Some Problems of Flood Analysis. Water Resources Research, 7(5), 1144-1150. doi:10.1029/wr007i005p01144 es_ES
dc.description.references Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., … Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588-590. doi:10.1126/science.aan2506 es_ES
dc.description.references Alfieri, L., Burek, P., Feyen, L., & Forzieri, G. (2015). Global warming increases the frequency of river floods in Europe. Hydrology and Earth System Sciences, 19(5), 2247-2260. doi:10.5194/hess-19-2247-2015 es_ES
dc.description.references Soriano, E., Mediero, L., & Garijo, C. (2018). Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Proceedings, 7(1), 14. doi:10.3390/ecws-3-05809 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem