- -

Nanomaterials: a Map for Their Selection in Food Packaging Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nanomaterials: a Map for Their Selection in Food Packaging Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchez Reig, Carmen es_ES
dc.contributor.author Dobon Lopez, Antonio es_ES
dc.contributor.author Hortal Ramos, Mercedes es_ES
dc.contributor.author Cloquell Ballester, Vicente Agustín es_ES
dc.date.accessioned 2020-04-17T12:47:12Z
dc.date.available 2020-04-17T12:47:12Z
dc.date.issued 2014 es_ES
dc.identifier.issn 0894-3214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140814
dc.description.abstract [EN] Even though research on nanotechnology has increased rapidly in the last decades, the application of nanotechnology in food and beverage packaging started to show an interest in the scientific community much more recently. Food safety, quality and improvements of properties compared with conventional materials make nanomaterials very attractive in the field of food and beverage packaging applications. Furthermore, in many cases, nanomaterials are used for both food packaging and the food contained, especially when we talk about nanomaterials for active and intelligent packaging. Oxygen scavengers, antimicrobial nanomaterials and nanobiosensors are some examples of current research efforts on nanomaterials for food packaging. This fact has led to a variety of nanoparticles and nanomaterials. The wide range of existing nanomaterials could make its selection for food packaging applications a challenge. Thus, building up a map based on the current state-of-the-art nanoparticles and nanomaterials is required. Furthermore, there is a need to classify all the nanomaterials used specifically in food packaging, independently of their nature, the packaging material and the way they are integrated to this material. In this paper, a classification of the latest advances in this field was made accompanied by the use of Multi-Criteria Decision Analysis in order to find which are the most relevant (and/or expected to be potentially exploited in the near future) nanomaterials in the area of food packaging. Copyright (c) 2014 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union's Seventh Framework Programme managed by the Research Executive Agency http://ec.europa.eu/research/rea (FP7/2007-2013 NMP 2011.1.1-1) under grant agreement no. 280759 Nanobarrier. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Packaging Technology and Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanoparticles es_ES
dc.subject Nanomaterials es_ES
dc.subject Food packaging es_ES
dc.subject Ranking es_ES
dc.subject Multi-criteria decision analysis es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Nanomaterials: a Map for Their Selection in Food Packaging Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pts.2076 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/280759/EU/Extended shelf-life biopolymers for sustainable and multifunctional food packaging solutions/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.description.bibliographicCitation Sanchez Reig, C.; Dobon Lopez, A.; Hortal Ramos, M.; Cloquell Ballester, VA. (2014). Nanomaterials: a Map for Their Selection in Food Packaging Applications. Packaging Technology and Science. 27(11):839-866. https://doi.org/10.1002/pts.2076 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pts.2076 es_ES
dc.description.upvformatpinicio 839 es_ES
dc.description.upvformatpfin 866 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\283748 es_ES
dc.description.references Platt D The Future of Global Packaging Pira International Ltd 2009 es_ES
dc.description.references Sonkaria, S., Ahn, S.-H., & Khare, V. (2012). Nanotechnology and its Impact on Food and Nutrition: A Review. Recent Patents on Food, Nutrition & Agriculturee, 4(1), 8-18. doi:10.2174/2212798411204010008 es_ES
dc.description.references Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. doi:10.1016/j.progpolymsci.2011.02.003 es_ES
dc.description.references ISO/TS 27687: Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and nanoplate 2008 es_ES
dc.description.references ISO/TS 80004-1: Nanotechnologies -- Vocabulary -- Part 1: Core terms 2010 es_ES
dc.description.references Dobon A NanoSafePack: Development of a best practices guide for the safe handling and use of nanoparticles in packaging industries 2013 es_ES
dc.description.references Bradley, E. L., Castle, L., & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science & Technology, 22(11), 604-610. doi:10.1016/j.tifs.2011.01.002 es_ES
dc.description.references Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. doi:10.1016/j.jcis.2011.07.017 es_ES
dc.description.references Chaudhry, Q., & Castle, L. (2011). Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends in Food Science & Technology, 22(11), 595-603. doi:10.1016/j.tifs.2011.01.001 es_ES
dc.description.references Neethirajan, S., & Jayas, D. S. (2010). Nanotechnology for the Food and Bioprocessing Industries. Food and Bioprocess Technology, 4(1), 39-47. doi:10.1007/s11947-010-0328-2 es_ES
dc.description.references Sekton, B. (2010). Food nanotechnology – an overview. Nanotechnology, Science and Applications, 1. doi:10.2147/nsa.s8677 es_ES
dc.description.references Magnuson, B. A., Jonaitis, T. S., & Card, J. W. (2011). A Brief Review of the Occurrence, Use, and Safety of Food-Related Nanomaterials. Journal of Food Science, 76(6), R126-R133. doi:10.1111/j.1750-3841.2011.02170.x es_ES
dc.description.references Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., … Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants: Part A, 25(3), 241-258. doi:10.1080/02652030701744538 es_ES
dc.description.references Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89. doi:10.1016/j.tibtech.2008.10.010 es_ES
dc.description.references Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology, 43(6), 837-842. doi:10.1016/j.lwt.2010.01.021 es_ES
dc.description.references Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182. doi:10.1016/j.foodchem.2008.11.047 es_ES
dc.description.references Han, W., Yu, Y., Li, N., & Wang, L. (2011). Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin, 56(12), 1216-1225. doi:10.1007/s11434-010-4326-6 es_ES
dc.description.references Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5), 417. doi:10.1039/b517131h es_ES
dc.description.references Greijer, H., Karlson, L., Lindquist, S.-E., & Anders Hagfeldt. (2001). Environmental aspects of electricity generation from a nanocrystalline dye sensitized solar cell system. Renewable Energy, 23(1), 27-39. doi:10.1016/s0960-1481(00)00111-7 es_ES
dc.description.references Fthenakis V Kim HC Gualtero S Bourtsalas A Nanomaterials in PV manufacture: Some life cycle environmental- and health-considerations 34th IEEE Photovoltaic Specialists Conference PVSC 2009 002003 002008 10.1109/PVSC.2009.5411495 es_ES
dc.description.references Şengül, H., & Theis, T. L. (2011). An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. Journal of Cleaner Production, 19(1), 21-31. doi:10.1016/j.jclepro.2010.08.010 es_ES
dc.description.references Lloyd, S. M., & Lave, L. B. (2003). Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles. Environmental Science & Technology, 37(15), 3458-3466. doi:10.1021/es026023q es_ES
dc.description.references Lloyd, S. M., Lave, L. B., & Matthews, H. S. (2005). Life Cycle Benefits of Using Nanotechnology To Stabilize Platinum-Group Metal Particles in Automotive Catalysts. Environmental Science & Technology, 39(5), 1384-1392. doi:10.1021/es049325w es_ES
dc.description.references Roes, A. L., Marsili, E., Nieuwlaar, E., & Patel, M. K. (2007). Environmental and Cost Assessment of a Polypropylene Nanocomposite. Journal of Polymers and the Environment, 15(3), 212-226. doi:10.1007/s10924-007-0064-5 es_ES
dc.description.references Khanna V Bakshi BR Lee LJ Assessing life cycle environmental implications of polymer nanocomposites 2008 1 6 10.1109/ISEE.2008.4562903 es_ES
dc.description.references Meyer, D. E., Curran, M. A., & Gonzalez, M. A. (2010). An examination of silver nanoparticles in socks using screening-level life cycle assessment. Journal of Nanoparticle Research, 13(1), 147-156. doi:10.1007/s11051-010-0013-4 es_ES
dc.description.references Walser, T., Demou, E., Lang, D. J., & Hellweg, S. (2011). Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts. Environmental Science & Technology, 45(10), 4570-4578. doi:10.1021/es2001248 es_ES
dc.description.references Deorsola, F. A., Russo, N., Blengini, G. A., & Fino, D. (2012). Synthesis, characterization and environmental assessment of nanosized MoS2 particles for lubricants applications. Chemical Engineering Journal, 195-196, 1-6. doi:10.1016/j.cej.2012.04.080 es_ES
dc.description.references Chapter 10: Green Electronics, Chemistry & Materials Nanotechnology 2012: Bio Sensors, Instruments, Medical, Environment and Energy 3 720 723 978-1-4665-6276-9 es_ES
dc.description.references Healy, M. L., Dahlben, L. J., & Isaacs, J. A. (2008). Environmental Assessment of Single-Walled Carbon Nanotube Processes. Journal of Industrial Ecology, 12(3), 376-393. doi:10.1111/j.1530-9290.2008.00058.x es_ES
dc.description.references Singh, A., Lou, H. H., Pike, R. W., Agboola, A., Li, X., Hopper, J. R., & Yaws, C. L. (2008). Environmental Impact Assessment for Potential Continuous Processes for the Production of Carbon Nanotubes. American Journal of Environmental Sciences, 4(5), 522-534. doi:10.3844/ajessp.2008.522.534 es_ES
dc.description.references Bauer, C., Buchgeister, J., Hischier, R., Poganietz, W. R., Schebek, L., & Warsen, J. (2008). Towards a framework for life cycle thinking in the assessment of nanotechnology. Journal of Cleaner Production, 16(8-9), 910-926. doi:10.1016/j.jclepro.2007.04.022 es_ES
dc.description.references Isaacs JA Tanwani A Healy ML Environmental Assessment of SWNT Production Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment 2006 38 41 10.1109/ISEE.2006.1650028 es_ES
dc.description.references Khanna, V., Bakshi, B. R., & Lee, L. J. (2008). Carbon Nanofiber Production. Journal of Industrial Ecology, 12(3), 394-410. doi:10.1111/j.1530-9290.2008.00052.x es_ES
dc.description.references Dobon, A., Cordero, P., Kreft, F., Østergaard, S. R., Robertsson, M., Smolander, M., & Hortal, M. (2011). The sustainability of communicative packaging concepts in the food supply chain. A case study: part 1. Life cycle assessment. The International Journal of Life Cycle Assessment, 16(2), 168-177. doi:10.1007/s11367-011-0257-y es_ES
dc.description.references Rosy Wei Chen, Navin-Chandra, D., & Print, F. B. (1994). A cost-benefit analysis model of product design for recyclability and its application. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 502-507. doi:10.1109/95.335032 es_ES
dc.description.references Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food es_ES
dc.description.references Government of Canada Food Packaging Materials Using Nanomaterials http://nanoportal.gc.ca/default.asp?lang=En&n=E90655B6-1 es_ES
dc.description.references U.S. Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition Guidance for Industry Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients that are Color Additives 2012 es_ES
dc.description.references Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30-46. doi:10.1016/j.tifs.2011.10.006 es_ES
dc.description.references Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., … Sips, A. J. A. M. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52-62. doi:10.1016/j.yrtph.2008.10.008 es_ES
dc.description.references Hatzigrigoriou, N. B., & Papaspyrides, C. D. (2011). Nanotechnology in plastic food-contact materials. Journal of Applied Polymer Science, 122(6), 3719-3738. doi:10.1002/app.34786 es_ES
dc.description.references Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Nonconvex Optimization and Its Applications. doi:10.1007/978-1-4757-2500-1 es_ES
dc.description.references Verghese, K. L., Horne, R., & Carre, A. (2010). PIQET: the design and development of an online ‘streamlined’ LCA tool for sustainable packaging design decision support. The International Journal of Life Cycle Assessment, 15(6), 608-620. doi:10.1007/s11367-010-0193-2 es_ES
dc.description.references Avella, M., Cosco, S., Lorenzo, M. L. D., Pace, E. D., Errico, M. E., & Gentile, G. (2006). iPP Based Nanocomposites Filled with Calcium Carbonate Nanoparticles: Structure/Properties Relationships. Macromolecular Symposia, 234(1), 156-162. doi:10.1002/masy.200650220 es_ES
dc.description.references Avella, M., Bruno, G., Errico, M. E., Gentile, G., Piciocchi, N., Sorrentino, A., & Volpe, M. G. (2007). Innovative packaging for minimally processed fruits. Packaging Technology and Science, 20(5), 325-335. doi:10.1002/pts.761 es_ES
dc.description.references Li, X. H., Tjong, S. C., Meng, Y. Z., & Zhu, Q. (2003). Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites. Journal of Polymer Science Part B: Polymer Physics, 41(15), 1806-1813. doi:10.1002/polb.10546 es_ES
dc.description.references Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch Nanoparticles: A Review. Biomacromolecules, 11(5), 1139-1153. doi:10.1021/bm901428y es_ES
dc.description.references Sanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science & Technology, 21(11), 528-536. doi:10.1016/j.tifs.2010.07.008 es_ES
dc.description.references Andersson, C. (2008). New ways to enhance the functionality of paperboard by surface treatment - a review. Packaging Technology and Science, 21(6), 339-373. doi:10.1002/pts.823 es_ES
dc.description.references EcoSphere Biolatex Binders http://www.ecosynthetix.com/biolatexr-technology/ecospherer/default.aspx es_ES
dc.description.references Ray, S. S., Okamoto, K., Maiti, P., & Okamotoa, M. (2002). New Poly(butylene succinate)/Layered Silicate Nanocomposites: Preparation and Mechanical Properties. Journal of Nanoscience and Nanotechnology, 2(2), 171-176. doi:10.1166/jnn.2002.086 es_ES
dc.description.references Zhijiang, C., & Guang, Y. (2011). Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Materials Letters, 65(2), 182-184. doi:10.1016/j.matlet.2010.09.055 es_ES
dc.description.references Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467-474. doi:10.1016/j.foodchem.2004.10.024 es_ES
dc.description.references Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197. doi:10.1002/masy.200690017 es_ES
dc.description.references Ozkoc, G., & Kemaloglu, S. (2009). Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. Journal of Applied Polymer Science, 114(4), 2481-2487. doi:10.1002/app.30772 es_ES
dc.description.references Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015 es_ES
dc.description.references Rhim, J.-W., & Ng, P. K. W. (2007). Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Critical Reviews in Food Science and Nutrition, 47(4), 411-433. doi:10.1080/10408390600846366 es_ES
dc.description.references Koga S Gas-barrier and moisture resistant paper laminate es_ES
dc.description.references Dallas, P., Sharma, V. K., & Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 166(1-2), 119-135. doi:10.1016/j.cis.2011.05.008 es_ES
dc.description.references Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21(3), 117-128. doi:10.1016/j.tifs.2009.12.006 es_ES
dc.description.references Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3-4), 408-413. doi:10.1016/j.foodcont.2010.09.011 es_ES
dc.description.references Chaudhry, Q., Castle, L., & Watkins, R. (Eds.). (2010). Nanotechnologies in Food. Nanoscience & Nanotechnology Series. doi:10.1039/9781847559883 es_ES
dc.description.references Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology, 10(1), 15. doi:10.1186/1743-8977-10-15 es_ES
dc.description.references Golja V Samardžija Z Dražic G Novak S Presence of nanoparticles in some food contact materials from Slovenian market 5th International Symposium on Food Packaging 2012 es_ES
dc.description.references Cui, Y., Liu, H., Zhou, M., Duan, Y., Li, N., Gong, X., … Hong, F. (2010). Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. Journal of Biomedical Materials Research Part A, 96A(1), 221-229. doi:10.1002/jbm.a.32976 es_ES
dc.description.references Costantino, U., Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2009). New Polymeric Composites Based on Poly(ϵ-caprolactone) and Layered Double Hydroxides Containing Antimicrobial Species. ACS Applied Materials & Interfaces, 1(3), 668-677. doi:10.1021/am8001988 es_ES
dc.description.references Xiao-e, L., Green, A. N. M., Haque, S. A., Mills, A., & Durrant, J. R. (2004). Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 253-259. doi:10.1016/j.nainr.2003.08.010 es_ES
dc.description.references LI, H., LI, F., WANG, L., SHENG, J., XIN, Z., ZHAO, L., … HU, Q. (2009). Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chemistry, 114(2), 547-552. doi:10.1016/j.foodchem.2008.09.085 es_ES
dc.description.references Mills, A., & Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors and Actuators B: Chemical, 136(2), 344-349. doi:10.1016/j.snb.2008.12.048 es_ES
dc.description.references Tarver T Food Nanotechnology 2006 http://www.ift.org/Knowledge-Center/Read-IFT-Publications/Science-Reports/Scientific-Status-Summaries/Editorial/~/media/Knowledge%20Center/Science%20Reports/Scientific%20Status%20Summaries/Editorial/editorial_1106_functionalmaterialinfood.pdf es_ES
dc.description.references Kalia, A., & Parshad, V. R. (2014). Novel Trends to Revolutionize Preservation and Packaging of Fruits/Fruit Products: Microbiological and Nanotechnological Perspectives. Critical Reviews in Food Science and Nutrition, 55(2), 159-182. doi:10.1080/10408398.2011.649315 es_ES
dc.description.references Valdés, M. G., Valdés González, A. C., García Calzón, J. A., & Díaz-García, M. E. (2009). Analytical nanotechnology for food analysis. Microchimica Acta, 166(1-2), 1-19. doi:10.1007/s00604-009-0165-z es_ES
dc.description.references Srinivas, P. R., Philbert, M., Vu, T. Q., Huang, Q., Kokini, J. L., Saos, E., … Ross, S. A. (2009). Nanotechnology Research: Applications in Nutritional Sciences. The Journal of Nutrition, 140(1), 119-124. doi:10.3945/jn.109.115048 es_ES
dc.description.references Jin, T., Sun, D., Su, J. Y., Zhang, H., & Sue, H.-J. (2009). Antimicrobial Efficacy of Zinc Oxide Quantum Dots againstListeria monocytogenes, SalmonellaEnteritidis, andEscherichia coliO157:H7. Journal of Food Science, 74(1), M46-M52. doi:10.1111/j.1750-3841.2008.01013.x es_ES
dc.description.references Li, X., Lu, Z., & Li, Q. (2013). Multilayered films incorporating CdTe quantum dots with tunable optical properties for antibacterial application. Thin Solid Films, 548, 336-342. doi:10.1016/j.tsf.2013.09.088 es_ES
dc.description.references Regulation (EC) No 1935/2004 of The European Parliament and of The Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC es_ES
dc.description.references Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food es_ES
dc.description.references U.S. Department of Health and Human Services Food and Drug Administration Office of the Commissioner Draft Guidance for Industry 2011 http://www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htm es_ES
dc.description.references Office of Policy Office of the Commissioner U.S. Food and Drug Administration FDA's Approach to Regulation of Nanotechnology Products http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htm es_ES
dc.description.references Hamburg, M. A. (2012). FDA’s Approach to Regulation of Products of Nanotechnology. Science, 336(6079), 299-300. doi:10.1126/science.1205441 es_ES
dc.description.references Bawa, R. (2013). FDA and Nanotech: Baby Steps Lead to Regulatory Uncertainty. Bio-Nanotechnology, 720-732. doi:10.1002/9781118451915.ch41 es_ES
dc.description.references U.S. Food and Drug Administration Inventory of Effective Food Contact Substance (FCS) Notifications http://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?filter=&sortColumn=&rpt=fcsListing es_ES
dc.description.references Arreche, R., Blanco, M., Vázquez, P., & Martín-Martínez, J. M. (2012). Use of new silica fillers as additives for polymers used in packaging of fruit. Química Nova, 35(10), 1907-1911. doi:10.1590/s0100-40422012001000003 es_ES
dc.description.references Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52(1-2), 34-40. doi:10.1016/j.clay.2011.01.025 es_ES
dc.description.references Costantino, U., Nocchetti, M., Sisani, M., & Vivani, R. (2009). Recent progress in the synthesis and application of organically modified hydrotalcites. Zeitschrift für Kristallographie, 224(5-6). doi:10.1524/zkri.2009.1153 es_ES
dc.description.references Bugatti, V., Costantino, U., Gorrasi, G., Nocchetti, M., Tammaro, L., & Vittoria, V. (2010). Nano-hybrids incorporation into poly(ε-caprolactone) for multifunctional applications: Mechanical and barrier properties. European Polymer Journal, 46(3), 418-427. doi:10.1016/j.eurpolymj.2009.11.003 es_ES
dc.description.references Longano, D., Ditaranto, N., Cioffi, N., Di Niso, F., Sibillano, T., Ancona, A., … Torsi, L. (2012). Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Analytical and Bioanalytical Chemistry, 403(4), 1179-1186. doi:10.1007/s00216-011-5689-5 es_ES
dc.description.references Rhim, J.-W., Hong, S.-I., Park, H.-M., & Ng, P. K. W. (2006). Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 54(16), 5814-5822. doi:10.1021/jf060658h es_ES
dc.description.references Kenawy, E.-R., Worley, S. D., & Broughton, R. (2007). The Chemistry and Applications of Antimicrobial Polymers:  A State-of-the-Art Review. Biomacromolecules, 8(5), 1359-1384. doi:10.1021/bm061150q es_ES
dc.description.references Dobon, A., Cordero, P., Kreft, F., Østergaard, S. R., Antvorskov, H., Robertsson, M., … Hortal, M. (2011). The sustainability of communicative packaging concepts in the food supply chain. A case study: part 2. Life cycle costing and sustainability assessment. The International Journal of Life Cycle Assessment, 16(6), 537-547. doi:10.1007/s11367-011-0291-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem