- -

The teaching size: computable teachers and learners for universal languages

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The teaching size: computable teachers and learners for universal languages

Show full item record

Telle, JA.; Hernández-Orallo, J.; Ferri Ramírez, C. (2019). The teaching size: computable teachers and learners for universal languages. Machine Learning. 108(8-9):1653-1675. https://doi.org/10.1007/s10994-019-05821-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140817

Files in this item

Item Metadata

Title: The teaching size: computable teachers and learners for universal languages
Author: Telle, Jan Arne Hernández-Orallo, José Ferri Ramírez, César
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] The theoretical hardness of machine teaching has usually been analyzed for a range of concept languages under several variants of the teaching dimension: the minimum number of examples that a teacher needs to figure ...[+]
Subjects: Machine teaching , Teaching dimension , Teaching size , Compression , Universal languages , P '' programming language , Levin's search
Copyrigths: Reserva de todos los derechos
Source:
Machine Learning. (issn: 0885-6125 )
DOI: 10.1007/s10994-019-05821-2
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10994-019-05821-2
Project ID:
FLI/RFP2-152
GV/BEST/2018/027
GENERALITAT VALENCIANA/PROMETEO/2019/098
AEI/RTI2018-094403- B-C32-AR
Thanks:
We would like to thank the anonymous referees for their helpful comments. This work was supported by the EU (FEDER) and the Spanish MINECO under grant RTI2018-094403-B-C32, and the Generalitat Valenciana PROMETEO/2019/098. ...[+]
Type: Artículo

References

Angluin, D., & Kriķis, M. (2003). Learning from different teachers. Machine Learning, 51(2), 137–163.

Balbach, F. J. (2007). Models for algorithmic teaching. Ph.D. thesis, University of Lübeck.

Balbach, F. J. (2008). Measuring teachability using variants of the teaching dimension. Theoretical Computer Science, 397(1–3), 94–113. [+]
Angluin, D., & Kriķis, M. (2003). Learning from different teachers. Machine Learning, 51(2), 137–163.

Balbach, F. J. (2007). Models for algorithmic teaching. Ph.D. thesis, University of Lübeck.

Balbach, F. J. (2008). Measuring teachability using variants of the teaching dimension. Theoretical Computer Science, 397(1–3), 94–113.

Balbach, F. J., & Zeugmann, T. (2009). Recent developments in algorithmic teaching. In Intl conf on language and automata theory and applications (pp. 1–18). Springer.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on machine learning (pp. 41–48). ACM.

Biran, O., & Cotton, C. (2017). Explanation and justification in machine learning: A survey. In IJCAI-17 Workshop on explainable AI (XAI) (p. 8).

Böhm, C. (1964). On a family of turing machines and the related programming language. ICC Bulletin, 3(3), 187–194.

Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on Information Theory, 21(2), 194–203.

Freivalds, R., Kinber, E. B., & Wiehagen, R. (1989). Inductive inference from good examples. In International workshop on analogical and inductive inference (pp. 1–17). Springer.

Freivalds, R., Kinber, E. B., & Wiehagen, R. (1993). On the power of inductive inference from good examples. Theoretical Computer Science, 110(1), 131–144.

Gao, Z., Ries, C., Simon, H. U., & Zilles, S. (2016). Preference-based teaching. In Conf. on learning theory (pp. 971–997).

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10(5), 447–474.

Goldman, S. A., & Kearns, M. J. (1995). On the complexity of teaching. Journal of Computer and System Sciences, 50(1), 20–31.

Goldman, S. A., & Mathias, H. D. (1993). Teaching a smart learner. In Conf. on computational learning theory (pp. 67–76).

Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S. H., Schmid, U., & Zorn, B. (2015). Inductive programming meets the real world. Communications of the ACM, 58(11).

Hernandez-Orallo, J., & Telle, J. A. (2018). Finite biased teaching with infinite concept classes. arXiv preprint. arXiv:1804.07121 .

Jun, S. W. (2016). 50,000,000,000 instructions per second: Design and implementation of a 256-core brainfuck computer. Computer Science and AI Laboratory, MIT.

Khan, F., Mutlu, B., & Zhu, X. (2011). How do humans teach: On curriculum learning and teaching dimension. In Advances in neural information processing systems (pp. 1449–1457).

Lake, B., & Baroni, M. (2018). Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In ICML (pp. 2879–2888).

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338.

Lázaro-Gredilla, M., Lin, D., Guntupalli, J. S., & George, D. (2019). Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs. Science Robotics 4.

Levin, L. A. (1973). Universal Search Problems. Problems of Information Transmission, 9, 265–266.

Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). New York, NY: Springer.

Lieberman, H. (2001). Your wish is my command: Programming by example. San Francisco, CA: Morgan Kaufmann.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by, and learning from, examples. Cognitive Psychology, 71, 55–89.

Shinohara, A., & Miyano, S. (1991). Teachability in computational learning. New Generation Computing, 8(4), 337–347.

Simard, P. Y., Amershi, S., Chickering, D. M., Pelton, A. E., Ghorashi, S., Meek, C., Ramos, G., Suh, J., Verwey, J., & Wang, M., et al. (2017). Machine teaching: A new paradigm for building machine learning systems. arXiv preprint arXiv:1707.06742 .

Solomonoff, R. J. (1964). A formal theory of inductive inference. Part I. Information and Control, 7(1), 1–22.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142.

Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264–280.

Zhu, X. (2013). Machine teaching for Bayesian learners in the exponential family. In Neural information processing systems 26, Curran (pp. 1905–1913).

Zhu, X. (2015). Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In AAAI (pp. 4083–4087).

Zhu, X., Singla, A., Zilles, S., & Rafferty, A. N. (2018). An overview of machine teaching. arXiv preprint arXiv:1801.05927 .

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record