- -

The teaching size: computable teachers and learners for universal languages

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The teaching size: computable teachers and learners for universal languages

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Telle, Jan Arne es_ES
dc.contributor.author Hernández-Orallo, José es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.date.accessioned 2020-04-17T12:47:18Z
dc.date.available 2020-04-17T12:47:18Z
dc.date.issued 2019-09 es_ES
dc.identifier.issn 0885-6125 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140817
dc.description.abstract [EN] The theoretical hardness of machine teaching has usually been analyzed for a range of concept languages under several variants of the teaching dimension: the minimum number of examples that a teacher needs to figure out so that the learner identifies the concept. However, for languages where concepts have structure (and hence size), such as Turing-complete languages, a low teaching dimension can be achieved at the cost of using very large examples, which are hard to process by the learner. In this paper we introduce the teaching size, a more intuitive way of assessing the theoretical feasibility of teaching concepts for structured languages. In the most general case of universal languages, we show that focusing on the total size of a witness set rather than its cardinality, we can teach all total functions that are computable within some fixed time bound. We complement the theoretical results with a range of experimental results on a simple Turing-complete language, showing how teaching dimension and teaching size differ in practice. Quite remarkably, we found that witness sets are usually smaller than the programs they identify, which is an illuminating justification of why machine teaching from examples makes sense at all. es_ES
dc.description.sponsorship We would like to thank the anonymous referees for their helpful comments. This work was supported by the EU (FEDER) and the Spanish MINECO under grant RTI2018-094403-B-C32, and the Generalitat Valenciana PROMETEO/2019/098. This work was done while the first author visited Universitat Politecnica de Valencia and also while the third author visited University of Bergen (covered by Generalitat Valenciana BEST/2018/027 and University of Bergen). J. Hernandez-Orallo is also funded by an FLI grant RFP2-152. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Machine Learning es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Machine teaching es_ES
dc.subject Teaching dimension es_ES
dc.subject Teaching size es_ES
dc.subject Compression es_ES
dc.subject Universal languages es_ES
dc.subject P '' programming language es_ES
dc.subject Levin's search es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title The teaching size: computable teachers and learners for universal languages es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10994-019-05821-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FLI//RFP2-152/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BEST%2F2018%2F027/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098/ES/DeepTrust: Deep Logic Technology for Software Trustworthiness/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTI2018-094403- B-C32-AR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Telle, JA.; Hernández-Orallo, J.; Ferri Ramírez, C. (2019). The teaching size: computable teachers and learners for universal languages. Machine Learning. 108(8-9):1653-1675. https://doi.org/10.1007/s10994-019-05821-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10994-019-05821-2 es_ES
dc.description.upvformatpinicio 1653 es_ES
dc.description.upvformatpfin 1675 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.description.issue 8-9 es_ES
dc.relation.pasarela S\397860 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Future of Life Institute es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Angluin, D., & Kriķis, M. (2003). Learning from different teachers. Machine Learning, 51(2), 137–163. es_ES
dc.description.references Balbach, F. J. (2007). Models for algorithmic teaching. Ph.D. thesis, University of Lübeck. es_ES
dc.description.references Balbach, F. J. (2008). Measuring teachability using variants of the teaching dimension. Theoretical Computer Science, 397(1–3), 94–113. es_ES
dc.description.references Balbach, F. J., & Zeugmann, T. (2009). Recent developments in algorithmic teaching. In Intl conf on language and automata theory and applications (pp. 1–18). Springer. es_ES
dc.description.references Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In Proceedings of the 26th annual international conference on machine learning (pp. 41–48). ACM. es_ES
dc.description.references Biran, O., & Cotton, C. (2017). Explanation and justification in machine learning: A survey. In IJCAI-17 Workshop on explainable AI (XAI) (p. 8). es_ES
dc.description.references Böhm, C. (1964). On a family of turing machines and the related programming language. ICC Bulletin, 3(3), 187–194. es_ES
dc.description.references Elias, P. (1975). Universal codeword sets and representations of the integers. IEEE Transactions on Information Theory, 21(2), 194–203. es_ES
dc.description.references Freivalds, R., Kinber, E. B., & Wiehagen, R. (1989). Inductive inference from good examples. In International workshop on analogical and inductive inference (pp. 1–17). Springer. es_ES
dc.description.references Freivalds, R., Kinber, E. B., & Wiehagen, R. (1993). On the power of inductive inference from good examples. Theoretical Computer Science, 110(1), 131–144. es_ES
dc.description.references Gao, Z., Ries, C., Simon, H. U., & Zilles, S. (2016). Preference-based teaching. In Conf. on learning theory (pp. 971–997). es_ES
dc.description.references Gold, E. M. (1967). Language identification in the limit. Information and Control, 10(5), 447–474. es_ES
dc.description.references Goldman, S. A., & Kearns, M. J. (1995). On the complexity of teaching. Journal of Computer and System Sciences, 50(1), 20–31. es_ES
dc.description.references Goldman, S. A., & Mathias, H. D. (1993). Teaching a smart learner. In Conf. on computational learning theory (pp. 67–76). es_ES
dc.description.references Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S. H., Schmid, U., & Zorn, B. (2015). Inductive programming meets the real world. Communications of the ACM, 58(11). es_ES
dc.description.references Hernandez-Orallo, J., & Telle, J. A. (2018). Finite biased teaching with infinite concept classes. arXiv preprint. arXiv:1804.07121 . es_ES
dc.description.references Jun, S. W. (2016). 50,000,000,000 instructions per second: Design and implementation of a 256-core brainfuck computer. Computer Science and AI Laboratory, MIT. es_ES
dc.description.references Khan, F., Mutlu, B., & Zhu, X. (2011). How do humans teach: On curriculum learning and teaching dimension. In Advances in neural information processing systems (pp. 1449–1457). es_ES
dc.description.references Lake, B., & Baroni, M. (2018). Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In ICML (pp. 2879–2888). es_ES
dc.description.references Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266), 1332–1338. es_ES
dc.description.references Lázaro-Gredilla, M., Lin, D., Guntupalli, J. S., & George, D. (2019). Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs. Science Robotics 4. es_ES
dc.description.references Levin, L. A. (1973). Universal Search Problems. Problems of Information Transmission, 9, 265–266. es_ES
dc.description.references Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed.). New York, NY: Springer. es_ES
dc.description.references Lieberman, H. (2001). Your wish is my command: Programming by example. San Francisco, CA: Morgan Kaufmann. es_ES
dc.description.references Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching by, and learning from, examples. Cognitive Psychology, 71, 55–89. es_ES
dc.description.references Shinohara, A., & Miyano, S. (1991). Teachability in computational learning. New Generation Computing, 8(4), 337–347. es_ES
dc.description.references Simard, P. Y., Amershi, S., Chickering, D. M., Pelton, A. E., Ghorashi, S., Meek, C., Ramos, G., Suh, J., Verwey, J., & Wang, M., et al. (2017). Machine teaching: A new paradigm for building machine learning systems. arXiv preprint arXiv:1707.06742 . es_ES
dc.description.references Solomonoff, R. J. (1964). A formal theory of inductive inference. Part I. Information and Control, 7(1), 1–22. es_ES
dc.description.references Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27(11), 1134–1142. es_ES
dc.description.references Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264–280. es_ES
dc.description.references Zhu, X. (2013). Machine teaching for Bayesian learners in the exponential family. In Neural information processing systems 26, Curran (pp. 1905–1913). es_ES
dc.description.references Zhu, X. (2015). Machine teaching: An inverse problem to machine learning and an approach toward optimal education. In AAAI (pp. 4083–4087). es_ES
dc.description.references Zhu, X., Singla, A., Zilles, S., & Rafferty, A. N. (2018). An overview of machine teaching. arXiv preprint arXiv:1801.05927 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem