- -

Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

Mostrar el registro completo del ítem

Martínez Guillamón, N.; Psikuta, A.; Kuklane, K.; Priego Quesada, JI.; Cibrián Ortiz De Anda, RM.; Pérez Soriano, P.; Salvador Palmer, R.... (2016). Validation of the thermophysiological model by Fiala for prediction of local skin temperatures. International Journal of Biometeorology. 60(12):1969-1982. https://doi.org/10.1007/s00484-016-1184-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140818

Ficheros en el ítem

Metadatos del ítem

Título: Validation of the thermophysiological model by Fiala for prediction of local skin temperatures
Autor: Martínez Guillamón, Natividad Psikuta, Agnes Kuklane, Kalev Priego Quesada, Jose Ignacio Cibrián Ortiz De Anda, Rosa María Pérez Soriano, Pedro Salvador Palmer, Rosario Corberán, José M. Rossi, Rene Michel Annaheim, Simon
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The most complete and realistic physiological data are derived from direct measurements during human experiments; however, they present some limitations such as ethical concerns, time and cost burden. Thermophysiological ...[+]
Palabras clave: Thermophysiological model , Thermophysiology , Skin temperature , Temperature sensors
Derechos de uso: Cerrado
Fuente:
International Journal of Biometeorology. (issn: 0020-7128 )
DOI: 10.1007/s00484-016-1184-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00484-016-1184-1
Código del Proyecto:
info:eu-repo/grantAgreement/COST//TU1101/EU/Towards safer bicycling through optimization of bicycle helmets and usage/
info:eu-repo/grantAgreement/SBFI//C11.0137/CH/Prediction of wearing comfort of bicycle helmets/
Agradecimientos:
This work has been supported by the State Secretariat for Education, Research and Innovation (SBFI C11.0137) under the grant COST Action TU1101 project (http://www.bicyclehelmets.eu/). The authors gratefully acknowledge ...[+]
Tipo: Artículo

References

Arens EA, Zhang H, Huizenga C (2006) Partial- and whole-body thermal sensation and comfort—part II: non-uniform environmental conditions. J Therm Biol 31:60–66

Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561. doi: 10.1007/s00421-002-0663-8

Bogerd CP, Rossi RM, Brühwiler PA (2010) Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study. Ann Occup Hyg 55:192–201. doi: 10.1093/annhyg/meq074 [+]
Arens EA, Zhang H, Huizenga C (2006) Partial- and whole-body thermal sensation and comfort—part II: non-uniform environmental conditions. J Therm Biol 31:60–66

Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561. doi: 10.1007/s00421-002-0663-8

Bogerd CP, Rossi RM, Brühwiler PA (2010) Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study. Ann Occup Hyg 55:192–201. doi: 10.1093/annhyg/meq074

Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300

Casa DJ, Becker SM, Ganio MS, et al. (2007) Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train 42:333–342

den Hartog E (2002) Evaluation of the THDYN model during student practical tests. In: 10th International Conference on Environmental Ergonomics. Fukuoka, pp 475–478

Easton C, Fudge BW, Pitsiladis YP (2007) Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol 32:78–86. doi: 10.1016/j.jtherbio.2006.10.004

Fanger PO (1970) Thermal comfort. Danish Technical Press, Copenhagen

Fiala D, Havenith G (2015) Modelling Human Heat Transfer and Temperature Regulation. In: Epstein AGY (ed) The Mechanobiology and Mechanophysiology of Military-Related Injuries. Springer Series, p 38. doi: 10.1007/8415_2015_183

Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human themoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi: 10.1007/s004840100099

Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429-441. doi: 10.1007/s00484-011-0424-7

Foda E, Almesri I, Awbi HB, Sirén K (2011) Models of human thermoregulation and the prediction of local and overall thermal sensations. Build Environ 46:2023–2032. doi: 10.1016/j.buildenv.2011.04.010

Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871

Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition. Text Res J. doi: 10.1177/0040517514551458

Geng Q, Kuklane K, Holmer I (1998) Tactile sensitivity of gloved hands in the cold operation. Appl Hum Sci J Physiol Anthropol 16:229–236

Gerrett N, Ouzzahra Y, Coleby S, et al. (2014) Thermal sensitivity to warmth during rest and exercise: a sex comparison. Eur J Appl Physiol 114:1451–1462. doi: 10.1007/s00421-014-2875-0

Givoni B, Goldman R (1971) Predicted metabolic energy cost. J Appl Physiol 30:429–433

Havenith G, Richards MG, Wang X, et al. (2008) Apparent latent heat of evaporation from clothing : attenuation and heat pipe effects. J Appl Physiol 104:142–149. doi: 10.1152/japplphysiol.00612.2007

Havenith G, Bröde P, den Hartog E, et al. (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi: 10.1152/japplphysiol.01271.2012

Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83

Huizenga C, Hui Z, Arens EA (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699

ISO7730 (2005) Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organisation for Standardisation, Geneva (Switzerland)

ISO7933 (2004) Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organisation for Standardisation, Geneva (Switzerland).

ISO8996 (2004) Ergonomics of the thermal environment—determination of metabolic rate. International Organisation for Standardisation, Geneva

ISO9920 (2007) Ergonomics of the thermal environment - estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organisation for Standardisation, Geneva

ISO11079 (2007) Ergonomics of the thermal environment - Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. International Organisation for Standardisation, Geneva (Switzerland).

Jack A (2010) Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. Kulturwissenschaftlichen Fakultät der Universität, Bayreuth

James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi: 10.1016/j.jtherbio.2014.08.010

Jones BW, Ogawa Y (1993) Transient response of the human clothing system. J Therm Biol 18:413–416

Kobayashi Y, Tanabe S (2013) Development of JOS-2 human thermoregulation model with detailed vascular system. Build Environ 66:1–10. doi: 10.1016/j.buildenv.2013.04.013

Kuklane K, Geng Q, Holmer I (1998) Effect of footwear insulation on thermal responses in the cold. Int J Occup Saf Ergon 4:137–152

Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235

Li Y, Li F, Liu Y, Luo Z (2004) An integrated model for simulating interactive thermal processes in human-clothing system. J Therm Biol 29:567–575. doi: 10.1016/j.jtherbio.2004.08.071

Lotens WA, van de Linde FJG, Havenith G (1995) Effect of condensation in clothing on heat transfer. Ergonomics 38:1114–1131

Lundgren K, Kuklane K, Jakobsson K, et al (2015) What is the role of traditional fermented foods to prevent heat strain at work ? In: 31st International Congress on Occupational Health (ICOH), Seoul

Mäkinen T, Gavhed D, Holmér I, Rintamäki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81:397–402. doi: 10.1007/s004210050060

Malchaire J, Piette A, Kampmann B, et al. (2001) Development and validation of the predicted heat strain model. Ann Occup Hyg 45:123–135. doi: 10.1093/annhyg/45.2.123

Margaria R (1968) Positive and negative work performances and their efficiencies in human locomotion. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie 25:339–351. doi: 10.1007/BF00699624

Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running. Sports Med 39:179–206

Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44:1777–1787. doi: 10.1016/j.buildenv.2008.11.016

Niedermann R, Wyss E, Annaheim S, et al. (2014) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi: 10.1007/s00484-013-0687-2

Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M, et al. (2015a) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi: 10.1016/j.jtherbio.2015.06.005

Priego Quesada JI, Martínez Guillamón N, Cibrián Ortiz de Anda RM, et al. (2015b) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008

Psikuta A (2009) Development of an “artificial human” for clothing research. De Monfort University, Leicester

Psikuta A, Fiala D, Laschewski G, et al. (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460

Psikuta A, Niedermann R, Rossi RM (2013a) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol. doi: 10.1007/s00484-013-0669-4

Psikuta A, Wang L-C, Rossi RM (2013b) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi: 10.1080/15459624.2013.766562

Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46:371–384. doi: 10.1016/j.ijthermalsci.2006.06.017

Smith CE (1991) A transient three-dimensional model of the thermal system. Kansas State University

Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi: 10.1007/s00421-010-1744-8

Stolwijk JA (1971) A mathematical model of physiological temperature regulation in man. NASA Contractor Report. Report No CR-1855.

Tanabe S, Kobayashi K, Nakano J, Ozeki Y (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646

Tanaka H, Kitada M, Taniguchi Y, et al (1992) Study on car air conditioning system controlled by car occupants’ skin temperatures—part 2: development of a new air conditioning system. SAE Technical Paper 920170. doi: 10.4271/920170

Teunissen LPJ, de Haan A, de Koning JJ, Daanen HAM (2012) Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol Meas 33:915–924. doi: 10.1088/0967-3334/33/6/915

Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. doi: 10.1088/0967-3334/32/10/003

Wagner JA, Horvath SM (1985) Influences of age and gender on human thermoregulatory responses to cold exposures. J Appl Physiol 58:180–186

Wang F, Gao C, Kuklane K, Holmér I (2011) Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method? Ann Occup Hyg 55:775–783. doi: 10.1093/annhyg/mer034

Wang F, Annaheim S, Morrissey M, Rossi RM (2013) Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment. Scand J Med Sci Sports 24:1–11. doi: 10.1111/sms.12117

Wang F, Havenith G, Mayor TS, et al (2014) Clothing real evaporative resistance determined by means of a sweating thermal manikin: a new round-robin study. In: 10th Manikin and Modelling Meeting (10i3m), Tampere, Finland, 7–9 September 2014

Werner J, Webb P (1993) A six-cylinder model of human thermoregulation for general use on personal computers. Ann Physiol Anthropol 12:123–134. doi: 10.2114/ahs1983.12.123

Wu H, Fan J (2008) Study of heat and moisture transfer within multi-layer clothing assemblies consisting of different types of battings. Int J Therm Sci 47:641–647. doi: 10.1016/j.ijthermalsci.2007.04.008

Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sci 16:61–75

Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi: 10.1088/0967-3334/29/4/007

Zatsiorsky V, Prilutsky B (2012) Chapter 7. Eccentric muscle action in human motion. In: biomechanics of skeletal muscles. Human Kinetics, p 536

Zhang H, Arens EA, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts. Build Environ 45:380–388. doi: 10.1016/j.buildenv.2009.06.018

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem