- -

Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Guillamón, Natividad es_ES
dc.contributor.author Psikuta, Agnes es_ES
dc.contributor.author Kuklane, Kalev es_ES
dc.contributor.author Priego Quesada, Jose Ignacio es_ES
dc.contributor.author Cibrián Ortiz De Anda, Rosa María es_ES
dc.contributor.author Pérez Soriano, Pedro es_ES
dc.contributor.author Salvador Palmer, Rosario es_ES
dc.contributor.author Corberán, José M. es_ES
dc.contributor.author Rossi, Rene Michel es_ES
dc.contributor.author Annaheim, Simon es_ES
dc.date.accessioned 2020-04-17T12:47:20Z
dc.date.available 2020-04-17T12:47:20Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0020-7128 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140818
dc.description.abstract [EN] The most complete and realistic physiological data are derived from direct measurements during human experiments; however, they present some limitations such as ethical concerns, time and cost burden. Thermophysiological models are able to predict human thermal response in a wide range of environmental conditions, but their use is limited due to lack of validation. The aim of this work was to validate the thermophysiological model by Fiala for prediction of local skin temperatures against a dedicated database containing 43 different human experiments representing a wide range of conditions. The validation was conducted based on root-mean-square deviation (rmsd) and bias. The thermophysiological model by Fiala showed a good precision when predicting core and mean skin temperature (rmsd 0.26 and 0.92 A degrees C, respectively) and also local skin temperatures for most body sites (average rmsd for local skin temperatures 1.32 A degrees C). However, an increased deviation of the predictions was observed for the forehead skin temperature (rmsd of 1.63 A degrees C) and for the thigh during exercising exposures (rmsd of 1.41 A degrees C). Possible reasons for the observed deviations are lack of information on measurement circumstances (hair, head coverage interference) or an overestimation of the sweat evaporative cooling capacity for the head and thigh, respectively. This work has highlighted the importance of collecting details about the clothing worn and how and where the sensors were attached to the skin for achieving more precise results in the simulations. es_ES
dc.description.sponsorship This work has been supported by the State Secretariat for Education, Research and Innovation (SBFI C11.0137) under the grant COST Action TU1101 project (http://www.bicyclehelmets.eu/). The authors gratefully acknowledge Dr. Dusan Fiala from Ergonsim (Germany) for his interesting and open discussion, Dr. Matthew Morrissey from Empa (St. Gallen, Switzerland) for his valuable inputs about evaporative cooling within clothing and Karin Lundgren-Kownacki from Lund University (Lund, Sweden) for her expert interpretation of experimental data in the heat. The authors thank all laboratories kindly providing human experimental data, within bygone COST Action 730: Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being (http://www.utci.org/cost.php), especially to Hanu Rintamaki from Finnish Institute for Occupational Health (Oulu, Finland), Igor Mekjavic from Josef Stefan Institute (Ljubljana, Slovenia) and Emiel den Hartog from TNO (The Hague, Netherlands). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Biometeorology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Thermophysiological model es_ES
dc.subject Thermophysiology es_ES
dc.subject Skin temperature es_ES
dc.subject Temperature sensors es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Validation of the thermophysiological model by Fiala for prediction of local skin temperatures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00484-016-1184-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//TU1101/EU/Towards safer bicycling through optimization of bicycle helmets and usage/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SBFI//C11.0137/CH/Prediction of wearing comfort of bicycle helmets/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Martínez Guillamón, N.; Psikuta, A.; Kuklane, K.; Priego Quesada, JI.; Cibrián Ortiz De Anda, RM.; Pérez Soriano, P.; Salvador Palmer, R.... (2016). Validation of the thermophysiological model by Fiala for prediction of local skin temperatures. International Journal of Biometeorology. 60(12):1969-1982. https://doi.org/10.1007/s00484-016-1184-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00484-016-1184-1 es_ES
dc.description.upvformatpinicio 1969 es_ES
dc.description.upvformatpfin 1982 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\332613 es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Staatssekretariat für Bildung, Forschung und Innovation, Suiza es_ES
dc.description.references Arens EA, Zhang H, Huizenga C (2006) Partial- and whole-body thermal sensation and comfort—part II: non-uniform environmental conditions. J Therm Biol 31:60–66 es_ES
dc.description.references Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561. doi: 10.1007/s00421-002-0663-8 es_ES
dc.description.references Bogerd CP, Rossi RM, Brühwiler PA (2010) Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study. Ann Occup Hyg 55:192–201. doi: 10.1093/annhyg/meq074 es_ES
dc.description.references Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300 es_ES
dc.description.references Casa DJ, Becker SM, Ganio MS, et al. (2007) Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train 42:333–342 es_ES
dc.description.references den Hartog E (2002) Evaluation of the THDYN model during student practical tests. In: 10th International Conference on Environmental Ergonomics. Fukuoka, pp 475–478 es_ES
dc.description.references Easton C, Fudge BW, Pitsiladis YP (2007) Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol 32:78–86. doi: 10.1016/j.jtherbio.2006.10.004 es_ES
dc.description.references Fanger PO (1970) Thermal comfort. Danish Technical Press, Copenhagen es_ES
dc.description.references Fiala D, Havenith G (2015) Modelling Human Heat Transfer and Temperature Regulation. In: Epstein AGY (ed) The Mechanobiology and Mechanophysiology of Military-Related Injuries. Springer Series, p 38. doi: 10.1007/8415_2015_183 es_ES
dc.description.references Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human themoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972 es_ES
dc.description.references Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi: 10.1007/s004840100099 es_ES
dc.description.references Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429-441. doi: 10.1007/s00484-011-0424-7 es_ES
dc.description.references Foda E, Almesri I, Awbi HB, Sirén K (2011) Models of human thermoregulation and the prediction of local and overall thermal sensations. Build Environ 46:2023–2032. doi: 10.1016/j.buildenv.2011.04.010 es_ES
dc.description.references Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871 es_ES
dc.description.references Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition. Text Res J. doi: 10.1177/0040517514551458 es_ES
dc.description.references Geng Q, Kuklane K, Holmer I (1998) Tactile sensitivity of gloved hands in the cold operation. Appl Hum Sci J Physiol Anthropol 16:229–236 es_ES
dc.description.references Gerrett N, Ouzzahra Y, Coleby S, et al. (2014) Thermal sensitivity to warmth during rest and exercise: a sex comparison. Eur J Appl Physiol 114:1451–1462. doi: 10.1007/s00421-014-2875-0 es_ES
dc.description.references Givoni B, Goldman R (1971) Predicted metabolic energy cost. J Appl Physiol 30:429–433 es_ES
dc.description.references Havenith G, Richards MG, Wang X, et al. (2008) Apparent latent heat of evaporation from clothing : attenuation and heat pipe effects. J Appl Physiol 104:142–149. doi: 10.1152/japplphysiol.00612.2007 es_ES
dc.description.references Havenith G, Bröde P, den Hartog E, et al. (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi: 10.1152/japplphysiol.01271.2012 es_ES
dc.description.references Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83 es_ES
dc.description.references Huizenga C, Hui Z, Arens EA (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699 es_ES
dc.description.references ISO7730 (2005) Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organisation for Standardisation, Geneva (Switzerland) es_ES
dc.description.references ISO7933 (2004) Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organisation for Standardisation, Geneva (Switzerland). es_ES
dc.description.references ISO8996 (2004) Ergonomics of the thermal environment—determination of metabolic rate. International Organisation for Standardisation, Geneva es_ES
dc.description.references ISO9920 (2007) Ergonomics of the thermal environment - estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organisation for Standardisation, Geneva es_ES
dc.description.references ISO11079 (2007) Ergonomics of the thermal environment - Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. International Organisation for Standardisation, Geneva (Switzerland). es_ES
dc.description.references Jack A (2010) Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. Kulturwissenschaftlichen Fakultät der Universität, Bayreuth es_ES
dc.description.references James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi: 10.1016/j.jtherbio.2014.08.010 es_ES
dc.description.references Jones BW, Ogawa Y (1993) Transient response of the human clothing system. J Therm Biol 18:413–416 es_ES
dc.description.references Kobayashi Y, Tanabe S (2013) Development of JOS-2 human thermoregulation model with detailed vascular system. Build Environ 66:1–10. doi: 10.1016/j.buildenv.2013.04.013 es_ES
dc.description.references Kuklane K, Geng Q, Holmer I (1998) Effect of footwear insulation on thermal responses in the cold. Int J Occup Saf Ergon 4:137–152 es_ES
dc.description.references Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235 es_ES
dc.description.references Li Y, Li F, Liu Y, Luo Z (2004) An integrated model for simulating interactive thermal processes in human-clothing system. J Therm Biol 29:567–575. doi: 10.1016/j.jtherbio.2004.08.071 es_ES
dc.description.references Lotens WA, van de Linde FJG, Havenith G (1995) Effect of condensation in clothing on heat transfer. Ergonomics 38:1114–1131 es_ES
dc.description.references Lundgren K, Kuklane K, Jakobsson K, et al (2015) What is the role of traditional fermented foods to prevent heat strain at work ? In: 31st International Congress on Occupational Health (ICOH), Seoul es_ES
dc.description.references Mäkinen T, Gavhed D, Holmér I, Rintamäki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81:397–402. doi: 10.1007/s004210050060 es_ES
dc.description.references Malchaire J, Piette A, Kampmann B, et al. (2001) Development and validation of the predicted heat strain model. Ann Occup Hyg 45:123–135. doi: 10.1093/annhyg/45.2.123 es_ES
dc.description.references Margaria R (1968) Positive and negative work performances and their efficiencies in human locomotion. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie 25:339–351. doi: 10.1007/BF00699624 es_ES
dc.description.references Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running. Sports Med 39:179–206 es_ES
dc.description.references Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44:1777–1787. doi: 10.1016/j.buildenv.2008.11.016 es_ES
dc.description.references Niedermann R, Wyss E, Annaheim S, et al. (2014) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi: 10.1007/s00484-013-0687-2 es_ES
dc.description.references Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M, et al. (2015a) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi: 10.1016/j.jtherbio.2015.06.005 es_ES
dc.description.references Priego Quesada JI, Martínez Guillamón N, Cibrián Ortiz de Anda RM, et al. (2015b) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008 es_ES
dc.description.references Psikuta A (2009) Development of an “artificial human” for clothing research. De Monfort University, Leicester es_ES
dc.description.references Psikuta A, Fiala D, Laschewski G, et al. (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460 es_ES
dc.description.references Psikuta A, Niedermann R, Rossi RM (2013a) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol. doi: 10.1007/s00484-013-0669-4 es_ES
dc.description.references Psikuta A, Wang L-C, Rossi RM (2013b) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi: 10.1080/15459624.2013.766562 es_ES
dc.description.references Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46:371–384. doi: 10.1016/j.ijthermalsci.2006.06.017 es_ES
dc.description.references Smith CE (1991) A transient three-dimensional model of the thermal system. Kansas State University es_ES
dc.description.references Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi: 10.1007/s00421-010-1744-8 es_ES
dc.description.references Stolwijk JA (1971) A mathematical model of physiological temperature regulation in man. NASA Contractor Report. Report No CR-1855. es_ES
dc.description.references Tanabe S, Kobayashi K, Nakano J, Ozeki Y (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646 es_ES
dc.description.references Tanaka H, Kitada M, Taniguchi Y, et al (1992) Study on car air conditioning system controlled by car occupants’ skin temperatures—part 2: development of a new air conditioning system. SAE Technical Paper 920170. doi: 10.4271/920170 es_ES
dc.description.references Teunissen LPJ, de Haan A, de Koning JJ, Daanen HAM (2012) Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol Meas 33:915–924. doi: 10.1088/0967-3334/33/6/915 es_ES
dc.description.references Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. doi: 10.1088/0967-3334/32/10/003 es_ES
dc.description.references Wagner JA, Horvath SM (1985) Influences of age and gender on human thermoregulatory responses to cold exposures. J Appl Physiol 58:180–186 es_ES
dc.description.references Wang F, Gao C, Kuklane K, Holmér I (2011) Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method? Ann Occup Hyg 55:775–783. doi: 10.1093/annhyg/mer034 es_ES
dc.description.references Wang F, Annaheim S, Morrissey M, Rossi RM (2013) Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment. Scand J Med Sci Sports 24:1–11. doi: 10.1111/sms.12117 es_ES
dc.description.references Wang F, Havenith G, Mayor TS, et al (2014) Clothing real evaporative resistance determined by means of a sweating thermal manikin: a new round-robin study. In: 10th Manikin and Modelling Meeting (10i3m), Tampere, Finland, 7–9 September 2014 es_ES
dc.description.references Werner J, Webb P (1993) A six-cylinder model of human thermoregulation for general use on personal computers. Ann Physiol Anthropol 12:123–134. doi: 10.2114/ahs1983.12.123 es_ES
dc.description.references Wu H, Fan J (2008) Study of heat and moisture transfer within multi-layer clothing assemblies consisting of different types of battings. Int J Therm Sci 47:641–647. doi: 10.1016/j.ijthermalsci.2007.04.008 es_ES
dc.description.references Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sci 16:61–75 es_ES
dc.description.references Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi: 10.1088/0967-3334/29/4/007 es_ES
dc.description.references Zatsiorsky V, Prilutsky B (2012) Chapter 7. Eccentric muscle action in human motion. In: biomechanics of skeletal muscles. Human Kinetics, p 536 es_ES
dc.description.references Zhang H, Arens EA, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts. Build Environ 45:380–388. doi: 10.1016/j.buildenv.2009.06.018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem