- -

Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roldán-Blay, Carlos es_ES
dc.contributor.author Miranda, Vladimiro es_ES
dc.contributor.author Carvalho, Leonel es_ES
dc.contributor.author Roldán-Porta, Carlos es_ES
dc.date.accessioned 2020-04-17T12:47:30Z
dc.date.available 2020-04-17T12:47:30Z
dc.date.issued 2019-12-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140821
dc.description.abstract [EN] The integration of renewable generation in electricity networks is one of the most widespread strategies to improve sustainability and to deal with the energy supply problem. Typically, the reinforcement of the generation fleet of an existing network requires the assessment and minimization of the installation and operating costs of all the energy resources in the network. Such analyses are usually conducted using peak demand and generation data. This paper proposes a method to optimize the location and size of different types of generation resources in a network, taking into account the typical evolution of demand and generation. The importance of considering this evolution is analyzed and the methodology is applied to two standard networks, namely the Institute of Electrical and Electronics Engineers (IEEE) 30-bus and the IEEE 118-bus. The proposed algorithm is based on the use of particle swarm optimization (PSO). In addition, the use of an initialization process based on the cross entropy (CE) method to accelerate convergence in problems of high computational cost is explored. The results of the case studies highlight the importance of considering dynamic demand and generation profiles to reach an effective integration of renewable resources (RRs) towards a sustainable development of electric systems. es_ES
dc.description.sponsorship The stay of the corresponding author that made this research possible was funded by a grant "Jose Castillejo" number CAS18/00291 of the Spanish Ministerio de Educacion, Cultura y Deporte. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microgrid planning es_ES
dc.subject Optimal generation sizing es_ES
dc.subject Optimal generation location es_ES
dc.subject Sustainable generation es_ES
dc.subject Particle swarm optimization es_ES
dc.subject Cross entropy es_ES
dc.subject Sustainable development es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11247111 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS18%2F00291/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2013-48574-C2-1-P/ES/HERRAMIENTAS DE ANALISIS PARA LA EVALUACION Y GESTION DE LA PARTICIPACION DE LA RESPUESTA DE LA DEMANDA EN LA PROVISION DE SERVICIOS COMPLEMENTARIOS EN SISTEMAS ELECTRICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Roldán-Blay, C.; Miranda, V.; Carvalho, L.; Roldán-Porta, C. (2019). Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids. Sustainability. 11(24):1-26. https://doi.org/10.3390/su11247111 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11247111 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\402177 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. doi:10.1016/j.enpol.2012.10.046 es_ES
dc.description.references Van de Ven, D. J., & Fouquet, R. (2017). Historical energy price shocks and their changing effects on the economy. Energy Economics, 62, 204-216. doi:10.1016/j.eneco.2016.12.009 es_ES
dc.description.references Osório, G., Shafie-khah, M., Lujano-Rojas, J., & Catalão, J. (2018). Scheduling Model for Renewable Energy Sources Integration in an Insular Power System. Energies, 11(1), 144. doi:10.3390/en11010144 es_ES
dc.description.references Lasseter, R. H. (2011). Smart Distribution: Coupled Microgrids. Proceedings of the IEEE, 99(6), 1074-1082. doi:10.1109/jproc.2011.2114630 es_ES
dc.description.references Moriarty, P., & Honnery, D. (2016). Can renewable energy power the future? Energy Policy, 93, 3-7. doi:10.1016/j.enpol.2016.02.051 es_ES
dc.description.references Ghosh, S., Ghoshal, S. P., & Ghosh, S. (2010). Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 32(8), 849-856. doi:10.1016/j.ijepes.2010.01.029 es_ES
dc.description.references Gomez-Gonzalez, M., López, A., & Jurado, F. (2012). Optimization of distributed generation systems using a new discrete PSO and OPF. Electric Power Systems Research, 84(1), 174-180. doi:10.1016/j.epsr.2011.11.016 es_ES
dc.description.references Li, Y., Li, Y., Li, G., Zhao, D., & Chen, C. (2018). Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process. Energy, 147, 286-296. doi:10.1016/j.energy.2018.01.036 es_ES
dc.description.references Yassine, A. A., Mostafa, O., & Browning, T. R. (2017). Scheduling multiple, resource-constrained, iterative, product development projects with genetic algorithms. Computers & Industrial Engineering, 107, 39-56. doi:10.1016/j.cie.2017.03.001 es_ES
dc.description.references Dias, B. H., Oliveira, L. W., Gomes, F. V., Silva, I. C., & Oliveira, E. J. (2012). Hybrid heuristic optimization approach for optimal Distributed Generation placement and sizing. 2012 IEEE Power and Energy Society General Meeting. doi:10.1109/pesgm.2012.6345653 es_ES
dc.description.references Prakash, D. B., & Lakshminarayana, C. (2016). Multiple DG Placements in Distribution System for Power Loss Reduction Using PSO Algorithm. Procedia Technology, 25, 785-792. doi:10.1016/j.protcy.2016.08.173 es_ES
dc.description.references Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2013). Analytical strategies for renewable distributed generation integration considering energy loss minimization. Applied Energy, 105, 75-85. doi:10.1016/j.apenergy.2012.12.023 es_ES
dc.description.references Syahputra, R., Robandi, I., & Ashari, M. (2015). Reconfiguration of Distribution Network with Distributed Energy Resources Integration Using PSO Algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 13(3), 759. doi:10.12928/telkomnika.v13i3.1790 es_ES
dc.description.references Ueckerdt, F., Brecha, R., & Luderer, G. (2015). Analyzing major challenges of wind and solar variability in power systems. Renewable Energy, 81, 1-10. doi:10.1016/j.renene.2015.03.002 es_ES
dc.description.references Kansal, S., Kumar, V., & Tyagi, B. (2013). Optimal placement of different type of DG sources in distribution networks. International Journal of Electrical Power & Energy Systems, 53, 752-760. doi:10.1016/j.ijepes.2013.05.040 es_ES
dc.description.references De Magalhaes Carvalho, L., Leite da Silva, A. M., & Miranda, V. (2018). Security-Constrained Optimal Power Flow via Cross-Entropy Method. IEEE Transactions on Power Systems, 33(6), 6621-6629. doi:10.1109/tpwrs.2018.2847766 es_ES
dc.description.references Zimmerman, R. D., Murillo-Sanchez, C. E., & Thomas, R. J. (2011). MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 26(1), 12-19. doi:10.1109/tpwrs.2010.2051168 es_ES
dc.description.references Matpower 7.0 User’s Manual; PSERC, USAhttps://matpower.org/docs/manual.pdf es_ES
dc.description.references Wang, H., Murillo-Sanchez, C. E., Zimmerman, R. D., & Thomas, R. J. (2007). On Computational Issues of Market-Based Optimal Power Flow. IEEE Transactions on Power Systems, 22(3), 1185-1193. doi:10.1109/tpwrs.2007.901301 es_ES
dc.description.references Abdi, H., Beigvand, S. D., & Scala, M. L. (2017). A review of optimal power flow studies applied to smart grids and microgrids. Renewable and Sustainable Energy Reviews, 71, 742-766. doi:10.1016/j.rser.2016.12.102 es_ES
dc.description.references Red Eléctrica de Españahttp://www.ree.es es_ES
dc.description.references Operador del Mercado Ibérico-Polo Español S.Ahttp://www.omie.es es_ES
dc.description.references Alsac, O., & Stott, B. (1974). Optimal Load Flow with Steady-State Security. IEEE Transactions on Power Apparatus and Systems, PAS-93(3), 745-751. doi:10.1109/tpas.1974.293972 es_ES
dc.description.references The IEEE 30-Bus Test Systemhttps://labs.ece.uw.edu/pstca/pf30/pg_tca30bus.htm es_ES
dc.description.references Open Energy Information—Transparent Cost Databasehttps://openei.org/apps/TCDB/ es_ES
dc.description.references Real Decreto 1955/2000, de 1 de Diciembre, Por el Que se Regulan las Actividades de Transporte, Distribución, Comercialización, Suministro y Procedimientos de Autorización de Instalaciones de Energía Eléctrica, (in Spanish)https://www.boe.es/boe/dias/2000/12/27/pdfs/A45988-46040.pdf es_ES
dc.description.references The IEEE 118-Bus Test Systemhttps://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem