- -

Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids

Mostrar el registro completo del ítem

Roldán-Blay, C.; Miranda, V.; Carvalho, L.; Roldán-Porta, C. (2019). Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids. Sustainability. 11(24):1-26. https://doi.org/10.3390/su11247111

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140821

Ficheros en el ítem

Metadatos del ítem

Título: Optimal Generation Scheduling with Dynamic Profiles for the Sustainable Development of Electricity Grids
Autor: Roldán-Blay, Carlos Miranda, Vladimiro Carvalho, Leonel Roldán-Porta, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] The integration of renewable generation in electricity networks is one of the most widespread strategies to improve sustainability and to deal with the energy supply problem. Typically, the reinforcement of the ...[+]
Palabras clave: Microgrid planning , Optimal generation sizing , Optimal generation location , Sustainable generation , Particle swarm optimization , Cross entropy , Sustainable development
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11247111
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su11247111
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//CAS18%2F00291/
info:eu-repo/grantAgreement/MINECO//ENE2013-48574-C2-1-P/ES/HERRAMIENTAS DE ANALISIS PARA LA EVALUACION Y GESTION DE LA PARTICIPACION DE LA RESPUESTA DE LA DEMANDA EN LA PROVISION DE SERVICIOS COMPLEMENTARIOS EN SISTEMAS ELECTRICOS/
Agradecimientos:
The stay of the corresponding author that made this research possible was funded by a grant "Jose Castillejo" number CAS18/00291 of the Spanish Ministerio de Educacion, Cultura y Deporte.
Tipo: Artículo

References

Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. doi:10.1016/j.enpol.2012.10.046

Van de Ven, D. J., & Fouquet, R. (2017). Historical energy price shocks and their changing effects on the economy. Energy Economics, 62, 204-216. doi:10.1016/j.eneco.2016.12.009

Osório, G., Shafie-khah, M., Lujano-Rojas, J., & Catalão, J. (2018). Scheduling Model for Renewable Energy Sources Integration in an Insular Power System. Energies, 11(1), 144. doi:10.3390/en11010144 [+]
Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. doi:10.1016/j.enpol.2012.10.046

Van de Ven, D. J., & Fouquet, R. (2017). Historical energy price shocks and their changing effects on the economy. Energy Economics, 62, 204-216. doi:10.1016/j.eneco.2016.12.009

Osório, G., Shafie-khah, M., Lujano-Rojas, J., & Catalão, J. (2018). Scheduling Model for Renewable Energy Sources Integration in an Insular Power System. Energies, 11(1), 144. doi:10.3390/en11010144

Lasseter, R. H. (2011). Smart Distribution: Coupled Microgrids. Proceedings of the IEEE, 99(6), 1074-1082. doi:10.1109/jproc.2011.2114630

Moriarty, P., & Honnery, D. (2016). Can renewable energy power the future? Energy Policy, 93, 3-7. doi:10.1016/j.enpol.2016.02.051

Ghosh, S., Ghoshal, S. P., & Ghosh, S. (2010). Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 32(8), 849-856. doi:10.1016/j.ijepes.2010.01.029

Gomez-Gonzalez, M., López, A., & Jurado, F. (2012). Optimization of distributed generation systems using a new discrete PSO and OPF. Electric Power Systems Research, 84(1), 174-180. doi:10.1016/j.epsr.2011.11.016

Li, Y., Li, Y., Li, G., Zhao, D., & Chen, C. (2018). Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process. Energy, 147, 286-296. doi:10.1016/j.energy.2018.01.036

Yassine, A. A., Mostafa, O., & Browning, T. R. (2017). Scheduling multiple, resource-constrained, iterative, product development projects with genetic algorithms. Computers & Industrial Engineering, 107, 39-56. doi:10.1016/j.cie.2017.03.001

Dias, B. H., Oliveira, L. W., Gomes, F. V., Silva, I. C., & Oliveira, E. J. (2012). Hybrid heuristic optimization approach for optimal Distributed Generation placement and sizing. 2012 IEEE Power and Energy Society General Meeting. doi:10.1109/pesgm.2012.6345653

Prakash, D. B., & Lakshminarayana, C. (2016). Multiple DG Placements in Distribution System for Power Loss Reduction Using PSO Algorithm. Procedia Technology, 25, 785-792. doi:10.1016/j.protcy.2016.08.173

Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2013). Analytical strategies for renewable distributed generation integration considering energy loss minimization. Applied Energy, 105, 75-85. doi:10.1016/j.apenergy.2012.12.023

Syahputra, R., Robandi, I., & Ashari, M. (2015). Reconfiguration of Distribution Network with Distributed Energy Resources Integration Using PSO Algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 13(3), 759. doi:10.12928/telkomnika.v13i3.1790

Ueckerdt, F., Brecha, R., & Luderer, G. (2015). Analyzing major challenges of wind and solar variability in power systems. Renewable Energy, 81, 1-10. doi:10.1016/j.renene.2015.03.002

Kansal, S., Kumar, V., & Tyagi, B. (2013). Optimal placement of different type of DG sources in distribution networks. International Journal of Electrical Power & Energy Systems, 53, 752-760. doi:10.1016/j.ijepes.2013.05.040

De Magalhaes Carvalho, L., Leite da Silva, A. M., & Miranda, V. (2018). Security-Constrained Optimal Power Flow via Cross-Entropy Method. IEEE Transactions on Power Systems, 33(6), 6621-6629. doi:10.1109/tpwrs.2018.2847766

Zimmerman, R. D., Murillo-Sanchez, C. E., & Thomas, R. J. (2011). MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 26(1), 12-19. doi:10.1109/tpwrs.2010.2051168

Matpower 7.0 User’s Manual; PSERC, USAhttps://matpower.org/docs/manual.pdf

Wang, H., Murillo-Sanchez, C. E., Zimmerman, R. D., & Thomas, R. J. (2007). On Computational Issues of Market-Based Optimal Power Flow. IEEE Transactions on Power Systems, 22(3), 1185-1193. doi:10.1109/tpwrs.2007.901301

Abdi, H., Beigvand, S. D., & Scala, M. L. (2017). A review of optimal power flow studies applied to smart grids and microgrids. Renewable and Sustainable Energy Reviews, 71, 742-766. doi:10.1016/j.rser.2016.12.102

Red Eléctrica de Españahttp://www.ree.es

Operador del Mercado Ibérico-Polo Español S.Ahttp://www.omie.es

Alsac, O., & Stott, B. (1974). Optimal Load Flow with Steady-State Security. IEEE Transactions on Power Apparatus and Systems, PAS-93(3), 745-751. doi:10.1109/tpas.1974.293972

The IEEE 30-Bus Test Systemhttps://labs.ece.uw.edu/pstca/pf30/pg_tca30bus.htm

Open Energy Information—Transparent Cost Databasehttps://openei.org/apps/TCDB/

Real Decreto 1955/2000, de 1 de Diciembre, Por el Que se Regulan las Actividades de Transporte, Distribución, Comercialización, Suministro y Procedimientos de Autorización de Instalaciones de Energía Eléctrica, (in Spanish)https://www.boe.es/boe/dias/2000/12/27/pdfs/A45988-46040.pdf

The IEEE 118-Bus Test Systemhttps://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem