- -

Diversity of Phytophthora Species Associated with Quercus ilex L. in Three Spanish Regions Evaluated by NGS

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diversity of Phytophthora Species Associated with Quercus ilex L. in Three Spanish Regions Evaluated by NGS

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora-Sala, Beatriz es_ES
dc.contributor.author Gramaje Pérez, David es_ES
dc.contributor.author Abad Campos, Paloma es_ES
dc.contributor.author Berbegal Martinez, Monica es_ES
dc.date.accessioned 2020-04-17T12:47:37Z
dc.date.available 2020-04-17T12:47:37Z
dc.date.issued 2019-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140824
dc.description.abstract [EN] The diversity of Phytophthora species in declining Fagaceae forests in Europe is increasing in the last years. The genus Quercus is one of the most extended Fagaceae genera in Europe, and Q. ilex is the dominant tree in Spain. The introduction of soil-borne pathogens, such as Phytophthora in Fagaceae forests modifies the microbial community present in the rhizosphere, and has relevant environmental and economic consequences. A better understanding of the diversity of Phytophthora spp. associated with Q. ilex is proposed in this study by using Next Generation Sequencing (NGS) in six Q. ilex stands located in three regions in Spain. Thirty-seven Phytophthora phylotypes belonging to clades 1 to 12, except for clades 4, 5 and 11, are detected in this study, which represents a high diversity of Phytophthora species in holm oak Spanish forests. Phytophthora chlamydospora, P. citrophthora, P. gonapodyides, P. lacustris, P. meadii, P. plurivora, P. pseudocryptogea, P. psychrophila and P. quercina were present in the three regions. Seven phylotypes could not be associated with known Phytophthora species, so they were putatively named as Phytophthora sp. Most of the detected phylotypes corresponded to terrestrial Phytophthora species but aquatic species from clades 6 and 9 were also present in all regions. es_ES
dc.description.sponsorship We would like to thank M. Leon from the Instituto Agroforestal Mediterraneo-UPV (Spain) for its technical assistance. This research was supported by funding from the project AGL2011-30438-C02-01 (Ministerio de Economia y Competitividad, Spain) and Euphresco [Instituto Nacional de Investigacion y Tecnologia Agraria y Agroalimentaria (EUPHESCO-CEP: "Current and Emerging Phytophthoras: Research Supporting Risk Assesssment and Risk Management")]. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Forests es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Forest disease monitoring es_ES
dc.subject Oomycetes es_ES
dc.subject Natural ecosystems es_ES
dc.subject Holm oak decline es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Diversity of Phytophthora Species Associated with Quercus ilex L. in Three Spanish Regions Evaluated by NGS es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/f10110979 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-30438-C02-01/ES/APLICACION DE TECNICAS MOLECULARES PARA VALORAR LA IMPLICACION DE PHYTOPHTHORA SPP. EN EL DECAIMIENTO DE QUERCUS ILEX/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Mora-Sala, B.; Gramaje Pérez, D.; Abad Campos, P.; Berbegal Martinez, M. (2019). Diversity of Phytophthora Species Associated with Quercus ilex L. in Three Spanish Regions Evaluated by NGS. Forests. 10(11):1-16. https://doi.org/10.3390/f10110979 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/f10110979 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 1999-4907 es_ES
dc.relation.pasarela S\401708 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Mideros, M. F., Turissini, D. A., Guayazán, N., Ibarra-Avila, H., Danies, G., Cárdenas, M., … Restrepo, S. (2018). Phytophthora betacei, a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia. Persoonia - Molecular Phylogeny and Evolution of Fungi, 41(1), 39-55. doi:10.3767/persoonia.2018.41.03 es_ES
dc.description.references Tremblay, É. D., Duceppe, M.-O., Bérubé, J. A., Kimoto, T., Lemieux, C., & Bilodeau, G. J. (2018). Screening for Exotic Forest Pathogens to Increase Survey Capacity Using Metagenomics. Phytopathology®, 108(12), 1509-1521. doi:10.1094/phyto-02-18-0028-r es_ES
dc.description.references Brasier, C. M. (1992). Oak tree mortality in Iberia. Nature, 360(6404), 539-539. doi:10.1038/360539a0 es_ES
dc.description.references Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Forest Pathology, 26(5), 253-272. doi:10.1111/j.1439-0329.1996.tb00846.x es_ES
dc.description.references Jung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103(7), 785-798. doi:10.1017/s0953756298007734 es_ES
dc.description.references Jung, T., Blaschke, H., & Osswald, W. (2000). Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49(6), 706-718. doi:10.1046/j.1365-3059.2000.00521.x es_ES
dc.description.references Jung, T., Hansen, E. M., Winton, L., Oswald, W., & Delatour, C. (2002). Three new species of Phytophthora from European oak forests. Mycological Research, 106(4), 397-411. doi:10.1017/s0953756202005622 es_ES
dc.description.references Jung, T., Nechwatal, J., Cooke, D. E. L., Hartmann, G., Blaschke, M., Oßwald, W. F., … Delatour, C. (2003). Phytophthora pseudosyringae sp. nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycological Research, 107(7), 772-789. doi:10.1017/s0953756203008074 es_ES
dc.description.references JUNG, T., HUDLER, G. W., JENSEN-TRACY, S. L., GRIFFITHS, H. M., FLEISCHMANN, F., & OSSWALD, W. (2006). Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist, 19(04), 159. doi:10.1017/s0269915x05004052 es_ES
dc.description.references Jung, T., Jung, M. H., Cacciola, S. O., Cech, T., Bakonyi, J., Seress, D., … Scanu, B. (2017). Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria, Italy and Portugal. IMA Fungus, 8(2), 219-244. doi:10.5598/imafungus.2017.08.02.02 es_ES
dc.description.references Robin, C., Desprez-Loustau, M.-L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales des Sciences Forestières, 55(8), 869-883. doi:10.1051/forest:19980801 es_ES
dc.description.references Hansen, E., & Delatour, C. (1999). Phytophthora species in oak forests of north-east France. ANNALS OF FOREST SCIENCE, 56(7), 539-547. doi:10.1051/forest:19990702 es_ES
dc.description.references VETTRAINO, A. M., BARZANTI, G. P., BIANCO, M. C., RAGAZZI, A., CAPRETTI, P., PAOLETTI, E., … VANNINI, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32(1), 19-28. doi:10.1046/j.1439-0329.2002.00264.x es_ES
dc.description.references Vettraino, A. M., Morel, O., Perlerou, C., Robin, C., Diamandis, S., & Vannini, A. (2005). Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with Ink Disease and crown decline. European Journal of Plant Pathology, 111(2), 169-180. doi:10.1007/s10658-004-1882-0 es_ES
dc.description.references Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., & Koike, S. T. (2002). Phytophthora ramorum as the Cause of Extensive Mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86(3), 205-214. doi:10.1094/pdis.2002.86.3.205 es_ES
dc.description.references Rizzo, D. M., & Garbelotto, M. (2003). Sudden oak death: endangering California and Oregon forest ecosystems. Frontiers in Ecology and the Environment, 1(4), 197-204. doi:10.1890/1540-9295(2003)001[0197:sodeca]2.0.co;2 es_ES
dc.description.references Balci, Y., & Halmschlager, E. (2003). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33(3), 157-174. doi:10.1046/j.1439-0329.2003.00318.x es_ES
dc.description.references Balci, Y., & Halmschlager, E. (2003). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52(6), 694-702. doi:10.1111/j.1365-3059.2003.00919.x es_ES
dc.description.references Balci, Y., Balci, S., Eggers, J., MacDonald, W. L., Juzwik, J., Long, R. P., & Gottschalk, K. W. (2007). Phytophthora spp. Associated with Forest Soils in Eastern and North-Central U.S. Oak Ecosystems. Plant Disease, 91(6), 705-710. doi:10.1094/pdis-91-6-0705 es_ES
dc.description.references Balci, Y., Balci, S., MacDonald, W. L., & Gottschalk, K. W. (2008). Relative susceptibility of oaks to seven species ofPhytophthoraisolated from oak forest soils. Forest Pathology, 38(6), 394-409. doi:10.1111/j.1439-0329.2008.00559.x es_ES
dc.description.references Balci, Y., Balci, S., Blair, J. E., Park, S.-Y., Kang, S., & Macdonald, W. L. (2008). Phytophthora quercetorum sp. nov., a novel species isolated from eastern and north-central USA oak forest soils. Mycological Research, 112(8), 906-916. doi:10.1016/j.mycres.2008.02.008 es_ES
dc.description.references Vannini, A., & Vettraino, A. (2011). Phytophthora cambivora. Forest Phytophthoras, 1(1). doi:10.5399/osu/fp.1.1.1811 es_ES
dc.description.references Pérez-Sierra, A., López-García, C., León, M., García-Jiménez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperaturePhytophthoraspecies associated withQuercusdecline in a Mediterranean forest in eastern Spain. Forest Pathology, 43(4), 331-339. doi:10.1111/efp.12037 es_ES
dc.description.references Brasier, C. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestières, 53(2-3), 347-358. doi:10.1051/forest:19960217 es_ES
dc.description.references Jung, T., Orlikowski, L., Henricot, B., Abad-Campos, P., Aday, A. G., Aguín Casal, O., … Chavarriaga, D. (2015). WidespreadPhytophthorainfestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology, 46(2), 134-163. doi:10.1111/efp.12239 es_ES
dc.description.references Vannini, A., Bruni, N., Tomassini, A., Franceschini, S., & Vettraino, A. M. (2013). Pyrosequencing of environmental soil samples reveals biodiversity of thePhytophthoraresident community in chestnut forests. FEMS Microbiology Ecology, 85(3), 433-442. doi:10.1111/1574-6941.12132 es_ES
dc.description.references Jankowiak, R., Stępniewska, H., Bilański, P., & Kolařík, M. (2014). Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica, 59(6), 531-542. doi:10.1007/s12223-014-0331-5 es_ES
dc.description.references Scanu, B., Linaldeddu, B. T., Deidda, A., & Jung, T. (2015). Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora crassamura and P. ornamentata sp. nov. PLOS ONE, 10(12), e0143234. doi:10.1371/journal.pone.0143234 es_ES
dc.description.references Corcobado, T., Miranda-Torres, J. J., Martín-García, J., Jung, T., & Solla, A. (2016). Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathology, 66(5), 792-804. doi:10.1111/ppa.12627 es_ES
dc.description.references Corcobado, T., Cubera, E., Pérez-Sierra, A., Jung, T., & Solla, A. (2010). First report ofPhytophthora gonapodyidesinvolved in the decline ofQuercus ilexin xeric conditions in Spain. New Disease Reports, 22, 33. doi:10.5197/j.2044-0588.2010.022.033 es_ES
dc.description.references Hansen, E. M., Reeser, P. W., & Sutton, W. (2012). PhytophthoraBeyond Agriculture. Annual Review of Phytopathology, 50(1), 359-378. doi:10.1146/annurev-phyto-081211-172946 es_ES
dc.description.references Català, S., Pérez-Sierra, A., & Abad-Campos, P. (2015). The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain. PLOS ONE, 10(3), e0119311. doi:10.1371/journal.pone.0119311 es_ES
dc.description.references Jung, T., La Spada, F., Pane, A., Aloi, F., Evoli, M., Horta Jung, M., … Cacciola, S. O. (2019). Diversity and Distribution of Phytophthora Species in Protected Natural Areas in Sicily. Forests, 10(3), 259. doi:10.3390/f10030259 es_ES
dc.description.references Jung, T., Pérez-Sierra, A., Durán, A., Jung, M. H., Balci, Y., & Scanu, B. (2018). Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia - Molecular Phylogeny and Evolution of Fungi, 40(1), 182-220. doi:10.3767/persoonia.2018.40.08 es_ES
dc.description.references Brasier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57(5), 792-808. doi:10.1111/j.1365-3059.2008.01886.x es_ES
dc.description.references O’Brien, P. A., Williams, N., & Hardy, G. E. S. (2009). DetectingPhytophthora. Critical Reviews in Microbiology, 35(3), 169-181. doi:10.1080/10408410902831518 es_ES
dc.description.references Berlanas, C., Berbegal, M., Elena, G., Laidani, M., Cibriain, J. F., Sagües, A., & Gramaje, D. (2019). The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01142 es_ES
dc.description.references TABERLET, P., COISSAC, E., HAJIBABAEI, M., & RIESEBERG, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 1789-1793. doi:10.1111/j.1365-294x.2012.05542.x es_ES
dc.description.references Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., … Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. doi:10.4137/bbi.s12462 es_ES
dc.description.references Vettraino, A. M., Bonants, P., Tomassini, A., Bruni, N., & Vannini, A. (2012). Pyrosequencing as a tool for the detection ofPhytophthoraspecies: error rate and risk of false Molecular Operational Taxonomic Units. Letters in Applied Microbiology, 55(5), 390-396. doi:10.1111/j.1472-765x.2012.03310.x es_ES
dc.description.references Català, S., Berbegal, M., Pérez-Sierra, A., & Abad-Campos, P. (2016). Metabarcoding and development of new real-time specific assays revealPhytophthoraspecies diversity in holm oak forests in eastern Spain. Plant Pathology, 66(1), 115-123. doi:10.1111/ppa.12541 es_ES
dc.description.references Prigigallo, M. I., Abdelfattah, A., Cacciola, S. O., Faedda, R., Sanzani, S. M., Cooke, D. E. L., & Schena, L. (2016). Metabarcoding Analysis of Phytophthora Diversity Using Genus-Specific Primers and 454 Pyrosequencing. Phytopathology®, 106(3), 305-313. doi:10.1094/phyto-07-15-0167-r es_ES
dc.description.references Scibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88(3), 356-368. doi:10.1016/j.mimet.2011.12.012 es_ES
dc.description.references Burgess, T. I., McDougall, K. L., Scott, P. M., Hardy, G. E. S., & Garnas, J. (2018). Predictors of Phytophthora diversity and community composition in natural areas across diverse Australian ecoregions. Ecography, 42(3), 565-577. doi:10.1111/ecog.03904 es_ES
dc.description.references Mora-Sala, B., Berbegal, M., & Abad-Campos, P. (2018). The Use of qPCR Reveals a High Frequency of Phytophthora quercina in Two Spanish Holm Oak Areas. Forests, 9(11), 697. doi:10.3390/f9110697 es_ES
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y.-H., Blair, J. E., … Kang, S. (2008). Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Disease, 92(6), 966-972. doi:10.1094/pdis-92-6-0966 es_ES
dc.description.references Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340 es_ES
dc.description.references Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197 es_ES
dc.description.references Felsenstein, J. (1985). CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP. Evolution, 39(4), 783-791. doi:10.1111/j.1558-5646.1985.tb00420.x es_ES
dc.description.references Glynou, K., Nam, B., Thines, M., & Maciá-Vicente, J. G. (2017). Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytologist, 217(3), 1190-1202. doi:10.1111/nph.14873 es_ES
dc.description.references Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180-W188. doi:10.1093/nar/gkx295 es_ES
dc.description.references Ruiz Gómez, F. J., Navarro-Cerrillo, R. M., Pérez-de-Luque, A., Oβwald, W., Vannini, A., & Morales-Rodríguez, C. (2019). Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Scientific Reports, 9(1). doi:10.1038/s41598-019-41804-y es_ES
dc.description.references Redondo, M. A., Boberg, J., Stenlid, J., & Oliva, J. (2018). Contrasting distribution patterns between aquatic and terrestrial Phytophthora species along a climatic gradient are linked to functional traits. The ISME Journal, 12(12), 2967-2980. doi:10.1038/s41396-018-0229-3 es_ES
dc.description.references BRASIER, C. M., ROBREDO, F., & FERRAZ, J. F. P. (1993). Evidence forPhytophthora cinnamomiinvolvement in Iberian oak decline. Plant Pathology, 42(1), 140-145. doi:10.1111/j.1365-3059.1993.tb01482.x es_ES
dc.description.references Gallego, B. F. J., de Algaba, A. P., & Fernandez-Escobar, R. (1999). Etiology of oak decline in Spain. Forest Pathology, 29(1), 17-27. doi:10.1046/j.1439-0329.1999.00128.x es_ES
dc.description.references SANCHEZ, M. E., CAETANO, P., FERRAZ, J., & TRAPERO, A. (2002). Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathology, 32(1), 5-18. doi:10.1046/j.1439-0329.2002.00261.x es_ES
dc.description.references De Sampaio e Paiva Camilo-Alves, C., da Clara, M. I. E., & de Almeida Ribeiro, N. M. C. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132(3), 411-432. doi:10.1007/s10342-013-0688-z es_ES
dc.description.references Serrano, M. S., De Vita, P., Fernández-Rebollo, P., & Sánchez Hernández, M. E. (2011). Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. European Journal of Plant Pathology, 132(2), 271-279. doi:10.1007/s10658-011-9871-6 es_ES
dc.description.references Mora-Sala, B., Abad-Campos, P., & Berbegal, M. (2018). Response of Quercus ilex seedlings to Phytophthora spp. root infection in a soil infestation test. European Journal of Plant Pathology, 154(2), 215-225. doi:10.1007/s10658-018-01650-6 es_ES
dc.description.references Jung, T., & Burgess, T. I. (2009). Re-evaluation of <I>Phytophthora citricola</I> isolates from multiple woody hosts in Europe and North America reveals a new species, <I>Phytophthora plurivora</I> sp. nov. Persoonia - Molecular Phylogeny and Evolution of Fungi, 22(1), 95-110. doi:10.3767/003158509x442612 es_ES
dc.description.references Ioos, R., Laugustin, L., Rose, S., Tourvieille, J., & Tourvieille de Labrouhe, D. (2007). Development of a PCR test to detect the downy mildew causal agent Plasmopara halstedii in sunflower seeds. Plant Pathology, 56(2), 209-218. doi:10.1111/j.1365-3059.2006.01500.x es_ES
dc.description.references Zhao, J., Wang, X. J., Chen, C. Q., Huang, L. L., & Kang, Z. S. (2007). A PCR-Based Assay for Detection of Puccinia striiformis f. sp. tritici in Wheat. Plant Disease, 91(12), 1669-1674. doi:10.1094/pdis-91-12-1669 es_ES
dc.description.references Alaei, H., Baeyen, S., Maes, M., Höfte, M., & Heungens, K. (2009). Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Journal of Microbiological Methods, 76(2), 136-145. doi:10.1016/j.mimet.2008.10.001 es_ES
dc.description.references Mrázková, M., Černý, K., Tomšovský, M., Strnadová, V., Gregorová, B., Holub, V., … Hejná, M. (2013). Occurrence of Phytophthora multivora and Phytophthora plurivora in the Czech Republic. Plant Protection Science, 49(No. 4), 155-164. doi:10.17221/74/2012-pps es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem