- -

Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz Perez, Guiomar es_ES
dc.contributor.author Medici, C. es_ES
dc.contributor.author Latron, J. es_ES
dc.contributor.author Llorens, P. es_ES
dc.contributor.author Gallart, F. es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2020-04-17T12:48:06Z
dc.date.available 2020-04-17T12:48:06Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0885-6087 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140836
dc.description.abstract [EN] Mediterranean catchments are characterized by strong nonlinearities in their hydrological behaviour. Properly simulating those nonlinearities still represents a great challenge and, at the same time, an important issue in order to improve our knowledge of their hydrological behaviour. The main aim of this work is find out diverse modelling approaches to reproduce the observed nonlinear hydrological behaviour in a small Mediterranean catchment, Can Vila (Vallcebre, NE Spain). To this end, three hydrological models were considered: two lumped models called LU3 and LU4 of increasing complexity, and a distributed model called TETIS. The structures of these different models were used as hypotheses, which could explain and reproduce the observed nonlinear behaviour at the outlet. Four analyses were carried out: (i) goodness-of-fit criteria analysis, (ii) residual errors analysis, (iii) sensitivity analysis and (iv) multicriteria analysis based on the concept of Pareto Optimal. These analyses showed the higher capability and robustness of the distributed model to reproduce the observed complex hydrological behaviour in this catchment. es_ES
dc.description.sponsorship This study was funded by the Spanish projects ECOTETIS (CGL2011-28776-C02-C01), PROBASE (CGL2006-11619/HID), RespHiMed (CGL2010-18374), PAID-06-12 (UPPTE/2012/139) and MONTES (CSD2008-00040). Research at Vallcebre catchments is also supported by an agreement between CSIC and Spanish Environment Ministry. J. Latron was the beneficiary of a research contract funded by Spanish Science Ministry and C. Medici by the Regional Government of Valencia. The authors are indebted to the other members of the Surface Hydrology and Erosion Research Group at IDAEA and CSIC for providing the necessary data and assistance. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Hydrological Processes es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hydrological modelling es_ES
dc.subject Goodness-of-fit es_ES
dc.subject Residual errors es_ES
dc.subject Sensitivity analysis es_ES
dc.subject Pareto Optimal es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/hyp.10738 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CGL2006-11619/ES/PROCESOS Y BALANCES HIDROLOGICOS Y DE SEDIMENTOS A DIFERENTES ESCALAS ESPACIALES EN AMBIENTES MEDITERRANEOS: EFECTOS DE LAS FLUCTUACIONES CLIMATICAS Y LOS CAMBIOS DE USO DEL SUELO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-18374/ES/APROXIMACIONES COMBINADAS PARA EL ESTUDIO DE LA ESTACIONALIDAD DE LA RESPUESTA HIDROLOGICA EN UN AMBIENTE MEDITERRANEO EN UN CONTEXTO DE CAMBIO GLOBAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00040/ES/Los montes españoles y el cambio global: amenazas y oportunidades. (MONTES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Ruiz Perez, G.; Medici, C.; Latron, J.; Llorens, P.; Gallart, F.; Francés, F. (2016). Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses. Hydrological Processes. 30(13):2050-2062. https://doi.org/10.1002/hyp.10738 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/hyp.10738 es_ES
dc.description.upvformatpinicio 2050 es_ES
dc.description.upvformatpfin 2062 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\300359 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Anderson, R. L. (1942). Distribution of the Serial Correlation Coefficient. The Annals of Mathematical Statistics, 13(1), 1-13. doi:10.1214/aoms/1177731638 es_ES
dc.description.references Anderton, S., Latron, J., & Gallart, F. (2002). Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrological Processes, 16(2), 333-353. doi:10.1002/hyp.336 es_ES
dc.description.references Bastidas, L. A., Gupta, H. V., Sorooshian, S., Shuttleworth, W. J., & Yang, Z. L. (1999). Sensitivity analysis of a land surface scheme using multicriteria methods. Journal of Geophysical Research: Atmospheres, 104(D16), 19481-19490. doi:10.1029/1999jd900155 es_ES
dc.description.references Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011 es_ES
dc.description.references Beven*, K. (2001). How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences, 5(1), 1-12. doi:10.5194/hess-5-1-2001 es_ES
dc.description.references Beven, K. (2002). Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrological Processes, 16(2), 189-206. doi:10.1002/hyp.343 es_ES
dc.description.references Burch, G. J., Bath, R. K., Moore, I. D., & O’Loughlin, E. M. (1987). Comparative hydrological behaviour of forested and cleared catchments in southeastern Australia. Journal of Hydrology, 90(1-2), 19-42. doi:10.1016/0022-1694(87)90171-5 es_ES
dc.description.references Carpenter, T. M., & Georgakakos, K. P. (2006). Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology, 329(1-2), 174-185. doi:10.1016/j.jhydrol.2006.02.013 es_ES
dc.description.references Chiew, F. H. S., Stewardson, M. J., & McMahon, T. A. (1993). Comparison of six rainfall-runoff modelling approaches. Journal of Hydrology, 147(1-4), 1-36. doi:10.1016/0022-1694(93)90073-i es_ES
dc.description.references Ciarapica, L., & Todini, E. (2002). TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrological Processes, 16(2), 207-229. doi:10.1002/hyp.342 es_ES
dc.description.references Clark, M. P., Kavetski, D., & Fenicia, F. (2011). Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 47(9). doi:10.1029/2010wr009827 es_ES
dc.description.references Dunn, S. M., Freer, J., Weiler, M., Kirkby, M. J., Seibert, J., Quinn, P. F., … Soulsby, C. (2008). Conceptualization in catchment modelling: simply learning? Hydrological Processes, 22(13), 2389-2393. doi:10.1002/hyp.7070 es_ES
dc.description.references Durand, P., Robson, A., & Neal, C. (1992). Modelling the hydrology of submediterranean montane catchments (Mont-Lozère, France) using TOPMODEL: initial results. Journal of Hydrology, 139(1-4), 1-14. doi:10.1016/0022-1694(92)90191-w es_ES
dc.description.references Ehret, U., & Zehe, E. (2011). Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events. Hydrology and Earth System Sciences, 15(3), 877-896. doi:10.5194/hess-15-877-2011 es_ES
dc.description.references Ewen, J. (2011). Hydrograph matching method for measuring model performance. Journal of Hydrology, 408(1-2), 178-187. doi:10.1016/j.jhydrol.2011.07.038 es_ES
dc.description.references Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G., Pfister, L., & Freer, J. (2013). Catchment properties, function, and conceptual model representation: is there a correspondence? Hydrological Processes, 28(4), 2451-2467. doi:10.1002/hyp.9726 es_ES
dc.description.references Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032 es_ES
dc.description.references Gallart, F., Llorens, P., & Latron, J. (1994). Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin. Journal of Hydrology, 159(1-4), 291-303. doi:10.1016/0022-1694(94)90262-3 es_ES
dc.description.references GALLART, F., LATRON, J., LLORENS, P., & RABADÀ, D. (1997). Hydrological functioning of mediterranean mountain basins in Vallcebre, Catalonia: Some challenges for hydrological modelling. Hydrological Processes, 11(9), 1263-1272. doi:10.1002/(sici)1099-1085(199707)11:9<1263::aid-hyp556>3.0.co;2-w es_ES
dc.description.references Gallart, F., Llorens, P., Latron, J., & Regüés, D. (2002). Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees. Hydrology and Earth System Sciences, 6(3), 527-537. doi:10.5194/hess-6-527-2002 es_ES
dc.description.references Gallart, F., Latron, J., Llorens, P., & Beven, K. (2007). Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions. Advances in Water Resources, 30(4), 808-823. doi:10.1016/j.advwatres.2006.06.005 es_ES
dc.description.references Gallart F Latron J Llorens P Garcia-Pintado J 2010 Hydrology in a Mediterranean mountain environment - The Vallcebre research basins (northeastern Spain) 336 286 291 es_ES
dc.description.references García-Ruiz, J. M., & Lana-Renault, N. (2011). Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region – A review. Agriculture, Ecosystems & Environment, 140(3-4), 317-338. doi:10.1016/j.agee.2011.01.003 es_ES
dc.description.references GIMHA: Research Group of Hydrological and Environmental Modelling 2015 Description of the distributed conceptual hydrological model TETIS v 8 http://lluvia.dihma.upv.es/ es_ES
dc.description.references Gupta, H. V., & Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011wr010962 es_ES
dc.description.references Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003 es_ES
dc.description.references Hornberger, G. (1980). Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario. Water Research, 14(1), 29-42. doi:10.1016/0043-1354(80)90039-1 es_ES
dc.description.references Jakeman, A. J., & Hornberger, G. M. (1993). How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8), 2637-2649. doi:10.1029/93wr00877 es_ES
dc.description.references Khakbaz, B., Imam, B., Hsu, K., & Sorooshian, S. (2012). From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models. Journal of Hydrology, 418-419, 61-77. doi:10.1016/j.jhydrol.2009.02.021 es_ES
dc.description.references Kirchner, J. W. (2006). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42(3). doi:10.1029/2005wr004362 es_ES
dc.description.references Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D.-J. (2004). Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 291(3-4), 297-318. doi:10.1016/j.jhydrol.2003.12.039 es_ES
dc.description.references Kuczera, G. (1983). Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resources Research, 19(5), 1151-1162. doi:10.1029/wr019i005p01151 es_ES
dc.description.references Latron, J., & Gallart, F. (2007). Seasonal dynamics of runoff-contributing areas in a small mediterranean research catchment (Vallcebre, Eastern Pyrenees). Journal of Hydrology, 335(1-2), 194-206. doi:10.1016/j.jhydrol.2006.11.012 es_ES
dc.description.references Latron, J., & Gallart, F. (2008). Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Journal of Hydrology, 358(3-4), 206-220. doi:10.1016/j.jhydrol.2008.06.014 es_ES
dc.description.references Latron, J., Soler, M., Llorens, P., & Gallart, F. (2008). Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrological Processes, 22(6), 775-787. doi:10.1002/hyp.6648 es_ES
dc.description.references Latron, J., Llorens, P., & Gallart, F. (2009). The Hydrology of Mediterranean Mountain Areas. Geography Compass, 3(6), 2045-2064. doi:10.1111/j.1749-8198.2009.00287.x es_ES
dc.description.references Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018 es_ES
dc.description.references Le Moine N 2008 es_ES
dc.description.references Llorens, P., Latron, J., & Gallart, F. (1992). Analysis of the role of agricultural abandoned terraces on the hydrology and sediment dynamics in a small mountainous basin (High Llobregat, Eastern Pyrenees). Pirineos, 139(0), 27-46. doi:10.3989/pirineos.1992.v139.180 es_ES
dc.description.references Llorens, P., Poyatos, R., Latron, J., Delgado, J., Oliveras, I., & Gallart, F. (2010). A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions. Hydrological Processes, 24(21), 3053-3064. doi:10.1002/hyp.7720 es_ES
dc.description.references Marc, V., Didon-Lescot, J.-F., & Michael, C. (2001). Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge. Journal of Hydrology, 247(3-4), 215-229. doi:10.1016/s0022-1694(01)00386-9 es_ES
dc.description.references Medici, C., Butturini, A., Bernal, S., Vázquez, E., Sabater, F., Vélez, J. I., & Francés, F. (2008). Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrological Processes, 22(18), 3814-3828. doi:10.1002/hyp.6991 es_ES
dc.description.references Medici, C., Wade, A. J., & Francés, F. (2012). Does increased hydrochemical model complexity decrease robustness? Journal of Hydrology, 440-441, 1-13. doi:10.1016/j.jhydrol.2012.02.047 es_ES
dc.description.references Parkin, G., O’Donnell, G., Ewen, J., Bathurst, J. C., O’Connell, P. E., & Lavabre, J. (1996). Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment. Journal of Hydrology, 175(1-4), 595-613. doi:10.1016/s0022-1694(96)80027-8 es_ES
dc.description.references Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275-289. doi:10.1016/s0022-1694(03)00225-7 es_ES
dc.description.references Poyatos, R., Latron, J., & Llorens, P. (2003). Land Use and Land Cover Change After Agricultural Abandonment. Mountain Research and Development, 23(4), 362-368. doi:10.1659/0276-4741(2003)023[0362:lualcc]2.0.co;2 es_ES
dc.description.references Pushpalatha, R., Perrin, C., Moine, N. L., & Andréassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420-421, 171-182. doi:10.1016/j.jhydrol.2011.11.055 es_ES
dc.description.references Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45. doi:10.1016/j.jhydrol.2012.12.004 es_ES
dc.description.references Rubio, C. M., Llorens, P., & Gallart, F. (2008). Uncertainty and efficiency of pedotransfer functions for estimating water retention characteristics of soils. European Journal of Soil Science, 59(2), 339-347. doi:10.1111/j.1365-2389.2007.01002.x es_ES
dc.description.references Savenije, H. H. G. (2009). HESS Opinions &quot;The art of hydrology&quot;*. Hydrology and Earth System Sciences, 13(2), 157-161. doi:10.5194/hess-13-157-2009 es_ES
dc.description.references Seeger, M., & Ries, J. B. (2008). Soil degradation and soil surface process intensities on abandoned fields in Mediterranean mountain environments. Land Degradation & Development, 19(5), 488-501. doi:10.1002/ldr.854 es_ES
dc.description.references Taha, A., Gresillon, J. M., & Clothier, B. E. (1997). Modelling the link between hillslope water movement and stream flow: application to a small Mediterranean forest watershed. Journal of Hydrology, 203(1-4), 11-20. doi:10.1016/s0022-1694(97)00081-4 es_ES
dc.description.references Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1-4), 83-97. doi:10.1016/s0022-1694(97)00107-8 es_ES
dc.description.references Zhang, Z., Koren, V., Smith, M., Reed, S., & Wang, D. (2004). Use of Next Generation Weather Radar Data and Basin Disaggregation to Improve Continuous Hydrograph Simulations. Journal of Hydrologic Engineering, 9(2), 103-115. doi:10.1061/(asce)1084-0699(2004)9:2(103) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem