- -

Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses

Mostrar el registro completo del ítem

Ruiz Perez, G.; Medici, C.; Latron, J.; Llorens, P.; Gallart, F.; Francés, F. (2016). Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses. Hydrological Processes. 30(13):2050-2062. https://doi.org/10.1002/hyp.10738

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140836

Ficheros en el ítem

Metadatos del ítem

Título: Investigating the behavior of a small Mediterranean catchment using three different hydrological models as hypotheses
Autor: Ruiz Perez, Guiomar Medici, C. Latron, J. Llorens, P. Gallart, F. Francés, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] Mediterranean catchments are characterized by strong nonlinearities in their hydrological behaviour. Properly simulating those nonlinearities still represents a great challenge and, at the same time, an important issue ...[+]
Palabras clave: Hydrological modelling , Goodness-of-fit , Residual errors , Sensitivity analysis , Pareto Optimal
Derechos de uso: Cerrado
Fuente:
Hydrological Processes. (issn: 0885-6087 )
DOI: 10.1002/hyp.10738
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/hyp.10738
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-12/
info:eu-repo/grantAgreement/MEC//CGL2006-11619/ES/PROCESOS Y BALANCES HIDROLOGICOS Y DE SEDIMENTOS A DIFERENTES ESCALAS ESPACIALES EN AMBIENTES MEDITERRANEOS: EFECTOS DE LAS FLUCTUACIONES CLIMATICAS Y LOS CAMBIOS DE USO DEL SUELO/
info:eu-repo/grantAgreement/MICINN//CGL2010-18374/ES/APROXIMACIONES COMBINADAS PARA EL ESTUDIO DE LA ESTACIONALIDAD DE LA RESPUESTA HIDROLOGICA EN UN AMBIENTE MEDITERRANEO EN UN CONTEXTO DE CAMBIO GLOBAL/
info:eu-repo/grantAgreement/MICINN//CSD2008-00040/ES/Los montes españoles y el cambio global: amenazas y oportunidades. (MONTES)/
info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/
Agradecimientos:
This study was funded by the Spanish projects ECOTETIS (CGL2011-28776-C02-C01), PROBASE (CGL2006-11619/HID), RespHiMed (CGL2010-18374), PAID-06-12 (UPPTE/2012/139) and MONTES (CSD2008-00040). Research at Vallcebre catchments ...[+]
Tipo: Artículo

References

Anderson, R. L. (1942). Distribution of the Serial Correlation Coefficient. The Annals of Mathematical Statistics, 13(1), 1-13. doi:10.1214/aoms/1177731638

Anderton, S., Latron, J., & Gallart, F. (2002). Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrological Processes, 16(2), 333-353. doi:10.1002/hyp.336

Bastidas, L. A., Gupta, H. V., Sorooshian, S., Shuttleworth, W. J., & Yang, Z. L. (1999). Sensitivity analysis of a land surface scheme using multicriteria methods. Journal of Geophysical Research: Atmospheres, 104(D16), 19481-19490. doi:10.1029/1999jd900155 [+]
Anderson, R. L. (1942). Distribution of the Serial Correlation Coefficient. The Annals of Mathematical Statistics, 13(1), 1-13. doi:10.1214/aoms/1177731638

Anderton, S., Latron, J., & Gallart, F. (2002). Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model. Hydrological Processes, 16(2), 333-353. doi:10.1002/hyp.336

Bastidas, L. A., Gupta, H. V., Sorooshian, S., Shuttleworth, W. J., & Yang, Z. L. (1999). Sensitivity analysis of a land surface scheme using multicriteria methods. Journal of Geophysical Research: Atmospheres, 104(D16), 19481-19490. doi:10.1029/1999jd900155

Bennett, N. D., Croke, B. F. W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., … Andreassian, V. (2013). Characterising performance of environmental models. Environmental Modelling & Software, 40, 1-20. doi:10.1016/j.envsoft.2012.09.011

Beven*, K. (2001). How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences, 5(1), 1-12. doi:10.5194/hess-5-1-2001

Beven, K. (2002). Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrological Processes, 16(2), 189-206. doi:10.1002/hyp.343

Burch, G. J., Bath, R. K., Moore, I. D., & O’Loughlin, E. M. (1987). Comparative hydrological behaviour of forested and cleared catchments in southeastern Australia. Journal of Hydrology, 90(1-2), 19-42. doi:10.1016/0022-1694(87)90171-5

Carpenter, T. M., & Georgakakos, K. P. (2006). Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales. Journal of Hydrology, 329(1-2), 174-185. doi:10.1016/j.jhydrol.2006.02.013

Chiew, F. H. S., Stewardson, M. J., & McMahon, T. A. (1993). Comparison of six rainfall-runoff modelling approaches. Journal of Hydrology, 147(1-4), 1-36. doi:10.1016/0022-1694(93)90073-i

Ciarapica, L., & Todini, E. (2002). TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrological Processes, 16(2), 207-229. doi:10.1002/hyp.342

Clark, M. P., Kavetski, D., & Fenicia, F. (2011). Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 47(9). doi:10.1029/2010wr009827

Dunn, S. M., Freer, J., Weiler, M., Kirkby, M. J., Seibert, J., Quinn, P. F., … Soulsby, C. (2008). Conceptualization in catchment modelling: simply learning? Hydrological Processes, 22(13), 2389-2393. doi:10.1002/hyp.7070

Durand, P., Robson, A., & Neal, C. (1992). Modelling the hydrology of submediterranean montane catchments (Mont-Lozère, France) using TOPMODEL: initial results. Journal of Hydrology, 139(1-4), 1-14. doi:10.1016/0022-1694(92)90191-w

Ehret, U., & Zehe, E. (2011). Series distance – an intuitive metric to quantify hydrograph similarity in terms of occurrence, amplitude and timing of hydrological events. Hydrology and Earth System Sciences, 15(3), 877-896. doi:10.5194/hess-15-877-2011

Ewen, J. (2011). Hydrograph matching method for measuring model performance. Journal of Hydrology, 408(1-2), 178-187. doi:10.1016/j.jhydrol.2011.07.038

Fenicia, F., Kavetski, D., Savenije, H. H. G., Clark, M. P., Schoups, G., Pfister, L., & Freer, J. (2013). Catchment properties, function, and conceptual model representation: is there a correspondence? Hydrological Processes, 28(4), 2451-2467. doi:10.1002/hyp.9726

Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032

Gallart, F., Llorens, P., & Latron, J. (1994). Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin. Journal of Hydrology, 159(1-4), 291-303. doi:10.1016/0022-1694(94)90262-3

GALLART, F., LATRON, J., LLORENS, P., & RABADÀ, D. (1997). Hydrological functioning of mediterranean mountain basins in Vallcebre, Catalonia: Some challenges for hydrological modelling. Hydrological Processes, 11(9), 1263-1272. doi:10.1002/(sici)1099-1085(199707)11:9<1263::aid-hyp556>3.0.co;2-w

Gallart, F., Llorens, P., Latron, J., & Regüés, D. (2002). Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees. Hydrology and Earth System Sciences, 6(3), 527-537. doi:10.5194/hess-6-527-2002

Gallart, F., Latron, J., Llorens, P., & Beven, K. (2007). Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions. Advances in Water Resources, 30(4), 808-823. doi:10.1016/j.advwatres.2006.06.005

Gallart F Latron J Llorens P Garcia-Pintado J 2010 Hydrology in a Mediterranean mountain environment - The Vallcebre research basins (northeastern Spain) 336 286 291

García-Ruiz, J. M., & Lana-Renault, N. (2011). Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region – A review. Agriculture, Ecosystems & Environment, 140(3-4), 317-338. doi:10.1016/j.agee.2011.01.003

GIMHA: Research Group of Hydrological and Environmental Modelling 2015 Description of the distributed conceptual hydrological model TETIS v 8 http://lluvia.dihma.upv.es/

Gupta, H. V., & Kling, H. (2011). On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resources Research, 47(10). doi:10.1029/2011wr010962

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003

Hornberger, G. (1980). Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario. Water Research, 14(1), 29-42. doi:10.1016/0043-1354(80)90039-1

Jakeman, A. J., & Hornberger, G. M. (1993). How much complexity is warranted in a rainfall-runoff model? Water Resources Research, 29(8), 2637-2649. doi:10.1029/93wr00877

Khakbaz, B., Imam, B., Hsu, K., & Sorooshian, S. (2012). From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models. Journal of Hydrology, 418-419, 61-77. doi:10.1016/j.jhydrol.2009.02.021

Kirchner, J. W. (2006). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42(3). doi:10.1029/2005wr004362

Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D.-J. (2004). Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 291(3-4), 297-318. doi:10.1016/j.jhydrol.2003.12.039

Kuczera, G. (1983). Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resources Research, 19(5), 1151-1162. doi:10.1029/wr019i005p01151

Latron, J., & Gallart, F. (2007). Seasonal dynamics of runoff-contributing areas in a small mediterranean research catchment (Vallcebre, Eastern Pyrenees). Journal of Hydrology, 335(1-2), 194-206. doi:10.1016/j.jhydrol.2006.11.012

Latron, J., & Gallart, F. (2008). Runoff generation processes in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Journal of Hydrology, 358(3-4), 206-220. doi:10.1016/j.jhydrol.2008.06.014

Latron, J., Soler, M., Llorens, P., & Gallart, F. (2008). Spatial and temporal variability of the hydrological response in a small Mediterranean research catchment (Vallcebre, Eastern Pyrenees). Hydrological Processes, 22(6), 775-787. doi:10.1002/hyp.6648

Latron, J., Llorens, P., & Gallart, F. (2009). The Hydrology of Mediterranean Mountain Areas. Geography Compass, 3(6), 2045-2064. doi:10.1111/j.1749-8198.2009.00287.x

Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018

Le Moine N 2008

Llorens, P., Latron, J., & Gallart, F. (1992). Analysis of the role of agricultural abandoned terraces on the hydrology and sediment dynamics in a small mountainous basin (High Llobregat, Eastern Pyrenees). Pirineos, 139(0), 27-46. doi:10.3989/pirineos.1992.v139.180

Llorens, P., Poyatos, R., Latron, J., Delgado, J., Oliveras, I., & Gallart, F. (2010). A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions. Hydrological Processes, 24(21), 3053-3064. doi:10.1002/hyp.7720

Marc, V., Didon-Lescot, J.-F., & Michael, C. (2001). Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge. Journal of Hydrology, 247(3-4), 215-229. doi:10.1016/s0022-1694(01)00386-9

Medici, C., Butturini, A., Bernal, S., Vázquez, E., Sabater, F., Vélez, J. I., & Francés, F. (2008). Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrological Processes, 22(18), 3814-3828. doi:10.1002/hyp.6991

Medici, C., Wade, A. J., & Francés, F. (2012). Does increased hydrochemical model complexity decrease robustness? Journal of Hydrology, 440-441, 1-13. doi:10.1016/j.jhydrol.2012.02.047

Parkin, G., O’Donnell, G., Ewen, J., Bathurst, J. C., O’Connell, P. E., & Lavabre, J. (1996). Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment. Journal of Hydrology, 175(1-4), 595-613. doi:10.1016/s0022-1694(96)80027-8

Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275-289. doi:10.1016/s0022-1694(03)00225-7

Poyatos, R., Latron, J., & Llorens, P. (2003). Land Use and Land Cover Change After Agricultural Abandonment. Mountain Research and Development, 23(4), 362-368. doi:10.1659/0276-4741(2003)023[0362:lualcc]2.0.co;2

Pushpalatha, R., Perrin, C., Moine, N. L., & Andréassian, V. (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, 420-421, 171-182. doi:10.1016/j.jhydrol.2011.11.055

Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45. doi:10.1016/j.jhydrol.2012.12.004

Rubio, C. M., Llorens, P., & Gallart, F. (2008). Uncertainty and efficiency of pedotransfer functions for estimating water retention characteristics of soils. European Journal of Soil Science, 59(2), 339-347. doi:10.1111/j.1365-2389.2007.01002.x

Savenije, H. H. G. (2009). HESS Opinions &quot;The art of hydrology&quot;*. Hydrology and Earth System Sciences, 13(2), 157-161. doi:10.5194/hess-13-157-2009

Seeger, M., & Ries, J. B. (2008). Soil degradation and soil surface process intensities on abandoned fields in Mediterranean mountain environments. Land Degradation & Development, 19(5), 488-501. doi:10.1002/ldr.854

Taha, A., Gresillon, J. M., & Clothier, B. E. (1997). Modelling the link between hillslope water movement and stream flow: application to a small Mediterranean forest watershed. Journal of Hydrology, 203(1-4), 11-20. doi:10.1016/s0022-1694(97)00081-4

Yapo, P. O., Gupta, H. V., & Sorooshian, S. (1998). Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1-4), 83-97. doi:10.1016/s0022-1694(97)00107-8

Zhang, Z., Koren, V., Smith, M., Reed, S., & Wang, D. (2004). Use of Next Generation Weather Radar Data and Basin Disaggregation to Improve Continuous Hydrograph Simulations. Journal of Hydrologic Engineering, 9(2), 103-115. doi:10.1061/(asce)1084-0699(2004)9:2(103)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem