- -

Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dubey, Ramu es_ES
dc.contributor.author Mishra, Lakshmi Narayan es_ES
dc.contributor.author Sánchez Ruiz, Luis Manuel es_ES
dc.date.accessioned 2020-04-17T12:48:21Z
dc.date.available 2020-04-17T12:48:21Z
dc.date.issued 2019-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140844
dc.description.abstract [EN] In this article, a pair of nondifferentiable second-order symmetric fractional primal-dual model (G-Mond-Weir type model) in vector optimization problem is formulated over arbitrary cones. In addition, we construct a nontrivial numerical example, which helps to understand the existence of such type of functions. Finally, we prove weak, strong and converse duality theorems under aforesaid assumptions. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Symmetry (Basel) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Multiobjective es_ES
dc.subject Symmetric duality es_ES
dc.subject Second-order es_ES
dc.subject Nondifferentiable es_ES
dc.subject Fractional programming es_ES
dc.subject Support function es_ES
dc.subject G(f)-bonvexity es_ES
dc.subject G(f)-pseudobonvexity es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/sym11111348 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Dubey, R.; Mishra, LN.; Sánchez Ruiz, LM. (2019). Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions. Symmetry (Basel). 11(11):1-18. https://doi.org/10.3390/sym11111348 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/sym11111348 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2073-8994 es_ES
dc.relation.pasarela S\396418 es_ES
dc.description.references Suneja, S. K., Aggarwal, S., & Davar, S. (2002). Multiobjective symmetric duality involving cones. European Journal of Operational Research, 141(3), 471-479. doi:10.1016/s0377-2217(01)00258-2 es_ES
dc.description.references Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29-50. doi:10.1007/s10479-007-0186-0 es_ES
dc.description.references Mangasarian, O. . (1975). Second- and higher-order duality in nonlinear programming. Journal of Mathematical Analysis and Applications, 51(3), 607-620. doi:10.1016/0022-247x(75)90111-0 es_ES
dc.description.references Kim, D. S., Yun, Y. B., & Lee, W. J. (1998). Multiobjective symmetric duality with cone constraints. European Journal of Operational Research, 107(3), 686-691. doi:10.1016/s0377-2217(97)00322-6 es_ES
dc.description.references Suneja, S. K., Lalitha, C. S., & Khurana, S. (2003). Second order symmetric duality in multiobjective programming. European Journal of Operational Research, 144(3), 492-500. doi:10.1016/s0377-2217(02)00154-6 es_ES
dc.description.references Khurana, S. (2005). Symmetric duality in multiobjective programming involving generalized cone-invex functions. European Journal of Operational Research, 165(3), 592-597. doi:10.1016/j.ejor.2003.03.004 es_ES
dc.description.references Antczak, T. (2007). New optimality conditions and duality results of type in differentiable mathematical programming. Nonlinear Analysis: Theory, Methods & Applications, 66(7), 1617-1632. doi:10.1016/j.na.2006.02.013 es_ES
dc.description.references Dubey, R., & Mishra, V. N. (2019). Symmetric duality results for second-order nondifferentiable multiobjective programming problem. RAIRO - Operations Research, 53(2), 539-558. doi:10.1051/ro/2019044 es_ES
dc.description.references Dubey, R., Mishra, L. N., & Ali, R. (2019). Special Class of Second-Order Non-Differentiable Symmetric Duality Problems with (G,αf)-Pseudobonvexity Assumptions. Mathematics, 7(8), 763. doi:10.3390/math7080763 es_ES
dc.description.references Antczak, T. (2008). On G-invex multiobjective programming. Part I. Optimality. Journal of Global Optimization, 43(1), 97-109. doi:10.1007/s10898-008-9299-5 es_ES
dc.description.references Gao, X. (2014). Sufficiency in Multiobjective Programming under Second-orderB- (p,r) -V- type I Functions. Journal of Interdisciplinary Mathematics, 17(4), 385-402. doi:10.1080/09720502.2014.952524 es_ES
dc.description.references Brumelle, S. (1981). Duality for Multiple Objective Convex Programs. Mathematics of Operations Research, 6(2), 159-172. doi:10.1287/moor.6.2.159 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem