Mostrar el registro sencillo del ítem
dc.contributor.author | Dubey, Ramu | es_ES |
dc.contributor.author | Mishra, Lakshmi Narayan | es_ES |
dc.contributor.author | Sánchez Ruiz, Luis Manuel | es_ES |
dc.date.accessioned | 2020-04-17T12:48:21Z | |
dc.date.available | 2020-04-17T12:48:21Z | |
dc.date.issued | 2019-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140844 | |
dc.description.abstract | [EN] In this article, a pair of nondifferentiable second-order symmetric fractional primal-dual model (G-Mond-Weir type model) in vector optimization problem is formulated over arbitrary cones. In addition, we construct a nontrivial numerical example, which helps to understand the existence of such type of functions. Finally, we prove weak, strong and converse duality theorems under aforesaid assumptions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Symmetry (Basel) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Multiobjective | es_ES |
dc.subject | Symmetric duality | es_ES |
dc.subject | Second-order | es_ES |
dc.subject | Nondifferentiable | es_ES |
dc.subject | Fractional programming | es_ES |
dc.subject | Support function | es_ES |
dc.subject | G(f)-bonvexity | es_ES |
dc.subject | G(f)-pseudobonvexity | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/sym11111348 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Dubey, R.; Mishra, LN.; Sánchez Ruiz, LM. (2019). Nondifferentiable G-Mond-Weir Type Multiobjective Symmetric Fractional Problem and Their Duality Theorems under Generalized Assumptions. Symmetry (Basel). 11(11):1-18. https://doi.org/10.3390/sym11111348 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/sym11111348 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 11 | es_ES |
dc.identifier.eissn | 2073-8994 | es_ES |
dc.relation.pasarela | S\396418 | es_ES |
dc.description.references | Suneja, S. K., Aggarwal, S., & Davar, S. (2002). Multiobjective symmetric duality involving cones. European Journal of Operational Research, 141(3), 471-479. doi:10.1016/s0377-2217(01)00258-2 | es_ES |
dc.description.references | Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29-50. doi:10.1007/s10479-007-0186-0 | es_ES |
dc.description.references | Mangasarian, O. . (1975). Second- and higher-order duality in nonlinear programming. Journal of Mathematical Analysis and Applications, 51(3), 607-620. doi:10.1016/0022-247x(75)90111-0 | es_ES |
dc.description.references | Kim, D. S., Yun, Y. B., & Lee, W. J. (1998). Multiobjective symmetric duality with cone constraints. European Journal of Operational Research, 107(3), 686-691. doi:10.1016/s0377-2217(97)00322-6 | es_ES |
dc.description.references | Suneja, S. K., Lalitha, C. S., & Khurana, S. (2003). Second order symmetric duality in multiobjective programming. European Journal of Operational Research, 144(3), 492-500. doi:10.1016/s0377-2217(02)00154-6 | es_ES |
dc.description.references | Khurana, S. (2005). Symmetric duality in multiobjective programming involving generalized cone-invex functions. European Journal of Operational Research, 165(3), 592-597. doi:10.1016/j.ejor.2003.03.004 | es_ES |
dc.description.references | Antczak, T. (2007). New optimality conditions and duality results of type in differentiable mathematical programming. Nonlinear Analysis: Theory, Methods & Applications, 66(7), 1617-1632. doi:10.1016/j.na.2006.02.013 | es_ES |
dc.description.references | Dubey, R., & Mishra, V. N. (2019). Symmetric duality results for second-order nondifferentiable multiobjective programming problem. RAIRO - Operations Research, 53(2), 539-558. doi:10.1051/ro/2019044 | es_ES |
dc.description.references | Dubey, R., Mishra, L. N., & Ali, R. (2019). Special Class of Second-Order Non-Differentiable Symmetric Duality Problems with (G,αf)-Pseudobonvexity Assumptions. Mathematics, 7(8), 763. doi:10.3390/math7080763 | es_ES |
dc.description.references | Antczak, T. (2008). On G-invex multiobjective programming. Part I. Optimality. Journal of Global Optimization, 43(1), 97-109. doi:10.1007/s10898-008-9299-5 | es_ES |
dc.description.references | Gao, X. (2014). Sufficiency in Multiobjective Programming under Second-orderB- (p,r) -V- type I Functions. Journal of Interdisciplinary Mathematics, 17(4), 385-402. doi:10.1080/09720502.2014.952524 | es_ES |
dc.description.references | Brumelle, S. (1981). Duality for Multiple Objective Convex Programs. Mathematics of Operations Research, 6(2), 159-172. doi:10.1287/moor.6.2.159 | es_ES |