Mostrar el registro sencillo del ítem
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.contributor.author | Seoane-Sepulveda, Juan B. | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2020-04-17T12:48:39Z | |
dc.date.available | 2020-04-17T12:48:39Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0025-584X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140856 | |
dc.description.abstract | [EN] We employ a classical result by Toeplitz (1913) and the seminal work by Bohnenblust and Hille on Dirichlet series (1931) to show that the set of continuous m-homogeneous non-analytic polynomials on c(o) contains an isomorphic copy of l(1). Moreover, we can have this copy of l(1) in such a way that every non-zero element of it fails to be analytic at precisely the same point. | es_ES |
dc.description.sponsorship | This work was partially supported by Ministerio de Educacion, Cultura y Deporte, projects MTM201347093-P, MTM2014-57838-C2-2-P, and MTM2015-65825-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematische Nachrichten | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bohnenblust-Hille polynomials | es_ES |
dc.subject | Dirichlet series | es_ES |
dc.subject | C(o) | es_ES |
dc.subject | Lineability | es_ES |
dc.subject | M-homogeneous polynomials | es_ES |
dc.subject | M-homogeneous non-analytic polynomials | es_ES |
dc.subject | Isomorphic copy of l(1) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Isomorphic copies of l(1) for m-homogeneous non-analytic Bohnenblust-Hille polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mana.201600082 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-57838-C2-2-P/ES/ANALISIS COMPLEJO EN DIMENSION FINITA E INFINITA. GEOMETRIA DE ESPACIOS DE BANACH/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-65825-P/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Conejero, JA.; Seoane-Sepulveda, JB.; Sevilla Peris, P. (2017). Isomorphic copies of l(1) for m-homogeneous non-analytic Bohnenblust-Hille polynomials. Mathematische Nachrichten. 290(2-3):218-225. https://doi.org/10.1002/mana.201600082 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mana.201600082 | es_ES |
dc.description.upvformatpinicio | 218 | es_ES |
dc.description.upvformatpfin | 225 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 290 | es_ES |
dc.description.issue | 2-3 | es_ES |
dc.relation.pasarela | S\353110 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Aron, R. M., Bernal-Gonzalez, L., Pellegrino, D. M., & Sepulveda, J. B. S. (2015). Lineability. doi:10.1201/b19277 | es_ES |
dc.description.references | F. Bayart A. Defant L. Frerick M. Maestre P. Sevilla-Peris Multipliers of Dirichlet series and monomial series expansions of holomorphic functions in infinitely many variables, arXiv:1405.7205 | es_ES |
dc.description.references | Bayart, F., Pellegrino, D., & Seoane-Sepúlveda, J. B. (2014). The Bohr radius of the n-dimensional polydisk is equivalent to(logn)/n. Advances in Mathematics, 264, 726-746. doi:10.1016/j.aim.2014.07.029 | es_ES |
dc.description.references | Bernal-González, L., Pellegrino, D., & Seoane-Sepúlveda, J. B. (2013). Linear subsets of nonlinear sets in topological vector spaces. Bulletin of the American Mathematical Society, 51(1), 71-130. doi:10.1090/s0273-0979-2013-01421-6 | es_ES |
dc.description.references | Bohnenblust, H. F., & Hille, E. (1931). On the Absolute Convergence of Dirichlet Series. The Annals of Mathematics, 32(3), 600. doi:10.2307/1968255 | es_ES |
dc.description.references | Defant, A., Frerick, L., Ortega-Cerdà, J., Ounaïes, M., & Seip, K. (2011). The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Annals of Mathematics, 174(1), 485-497. doi:10.4007/annals.2011.174.1.13 | es_ES |
dc.description.references | Defant, A., & Sevilla-Peris, P. (2014). The Bohnenblust-Hille cycle of ideas from a modern point of view. Functiones et Approximatio Commentarii Mathematici, 50(1), 55-127. doi:10.7169/facm/2014.50.1.2 | es_ES |
dc.description.references | Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 | es_ES |
dc.description.references | Enflo, P. H., Gurariy, V. I., & Seoane-Sepúlveda, J. B. (2014). On Montgomery’s conjecture and the distribution of Dirichlet sums. Journal of Functional Analysis, 267(4), 1241-1255. doi:10.1016/j.jfa.2014.04.001 | es_ES |
dc.description.references | Enflo, P. H., Gurariy, V. I., & Seoane-Sepúlveda, J. B. (2013). Some results and open questions on spaceability in function spaces. Transactions of the American Mathematical Society, 366(2), 611-625. doi:10.1090/s0002-9947-2013-05747-9 | es_ES |
dc.description.references | O. Toeplitz Über eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlichvielen Veränderlichen, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen 417 432 1913 | es_ES |