- -

Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design

Mostrar el registro completo del ítem

Tenza-Abril, AJ.; Saval, JM.; Garcia-Vera, VE.; Miguel Solak, A.; Real-Herraiz, TP.; Marcos Ortega, J. (2019). Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design. Applied Sciences. 9(2):1-16. https://doi.org/10.3390/app9020272

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140862

Ficheros en el ítem

Metadatos del ítem

Título: Effects of Using Mine Tailings from La Unión (Spain) in Hot Bituminous Mixes Design
Autor: Tenza-Abril, Antonio José Saval, Jose Miguel Garcia-Vera, Victoria Eugenia Miguel Solak, Afonso Real-Herraiz, Teresa Pilar Marcos Ortega, José
Entidad UPV: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Fecha difusión:
Resumen:
[EN] Currently, political policies aimed at curbing the abuse of natural resources have given rise to a conscientiousness leading to the reevaluation of wastes. Wastes generated from previous mining operations greatly ...[+]
Palabras clave: Mine tailings , Waste , Marshall Stability and flow tests , Hot mix asphalt , Fatigue resistance , Permanent deformation , Moisture sensitivity , Environment
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app9020272
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app9020272
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2012%2F113/
info:eu-repo/grantAgreement/UA//VIGROB-256/
info:eu-repo/grantAgreement/UA//GRE10-28/
Agradecimientos:
This work was financed by the University of Alicante through Projects VIGROB-256 and GRE10-28 and by the Valencian Community through project GV/2012/113.
Tipo: Artículo

References

Ashley, P. M., Lottermoser, B. G., Collins, A. J., & Grant, C. D. (2004). Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environmental Geology, 46(5). doi:10.1007/s00254-004-1063-7

Lee, C. H., Lee, H. K., & Lee, J. C. (2001). Hydrogeochemistry of mine, surface and groundwaters from the Sanggok mine creek in the upper Chungju Lake, Republic of Korea. Environmental Geology, 40(4-5), 482-494. doi:10.1007/s002540000184

Marguı́, E., Salvadó, V., Queralt, I., & Hidalgo, M. (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Analytica Chimica Acta, 524(1-2), 151-159. doi:10.1016/j.aca.2004.05.043 [+]
Ashley, P. M., Lottermoser, B. G., Collins, A. J., & Grant, C. D. (2004). Environmental geochemistry of the derelict Webbs Consols mine, New South Wales, Australia. Environmental Geology, 46(5). doi:10.1007/s00254-004-1063-7

Lee, C. H., Lee, H. K., & Lee, J. C. (2001). Hydrogeochemistry of mine, surface and groundwaters from the Sanggok mine creek in the upper Chungju Lake, Republic of Korea. Environmental Geology, 40(4-5), 482-494. doi:10.1007/s002540000184

Marguı́, E., Salvadó, V., Queralt, I., & Hidalgo, M. (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Analytica Chimica Acta, 524(1-2), 151-159. doi:10.1016/j.aca.2004.05.043

Intergovernmental Panel on Climate Change (Ed.). (s. f.). Summary for Policymakers. Climate Change 2013 - The Physical Science Basis, 1-30. doi:10.1017/cbo9781107415324.004

Herrera, G., Tomás, R., Vicente, F., Lopez-Sanchez, J. M., Mallorquí, J. J., & Mulas, J. (2010). Mapping ground movements in open pit mining areas using differential SAR interferometry. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1114-1125. doi:10.1016/j.ijrmms.2010.07.006

Herrera, G., Tomás, R., Lopez-Sanchez, J. M., Delgado, J., Mallorqui, J. J., Duque, S., & Mulas, J. (2007). Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90(3-4), 148-159. doi:10.1016/j.enggeo.2007.01.001

Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2008). Metal extractability in acidic and neutral mine tailings from the Cartagena-La Unión Mining District (SE Spain). Applied Geochemistry, 23(5), 1232-1240. doi:10.1016/j.apgeochem.2007.11.013

Gonzalez-Fernandez, O., Queralt, I., Carvalho, M. L., & Garcia, G. (2007). Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262(1), 81-86. doi:10.1016/j.nimb.2007.05.006

Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environmental Geology, 51(1), 47-64. doi:10.1007/s00254-006-0303-4

Ma, F., Sha, A., Lin, R., Huang, Y., & Wang, C. (2016). Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China. International Journal of Environmental Research and Public Health, 13(3), 351. doi:10.3390/ijerph13030351

Acosta Alvarez, D., Alonso Aenlle, A., & Tenza-Abril, A. (2018). Laboratory Evaluation of Hot Asphalt Concrete Properties with Cuban Recycled Concrete Aggregates. Sustainability, 10(8), 2590. doi:10.3390/su10082590

Bueno, M., Luong, J., Terán, F., Viñuela, U., Vázquez, V., & Paje, S. (2014). Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process. Coatings, 4(3), 602-613. doi:10.3390/coatings4030602

Woszuk, A., & Franus, W. (2017). A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Applied Sciences, 7(3), 293. doi:10.3390/app7030293

Xiao, F., Li, R., Zhang, H., & Amirkhanian, S. (2017). Low Temperature Performance Characteristics of Reclaimed Asphalt Pavement (RAP) Mortars with Virgin and Aged Soft Binders. Applied Sciences, 7(3), 304. doi:10.3390/app7030304

Moon, K. H., Falchetto, A. C., Wang, D., Riccardi, C., & Wistuba, M. P. (2017). Mechanical Performance of Asphalt Mortar Containing Hydrated Lime and EAFSS at Low and High Temperatures. Materials, 10(7), 743. doi:10.3390/ma10070743

Sangiorgi, C., Tataranni, P., Mazzotta, F., Simone, A., Vignali, V., & Lantieri, C. (2017). Alternative Fillers for the Production of Bituminous Mixtures: A Screening Investigation on Waste Powders. Coatings, 7(6), 76. doi:10.3390/coatings7060076

Tenza-Abril, A. J., Saval, J. M., & Cuenca, A. (2015). Using Sewage-Sludge Ash as Filler in Bituminous Mixes. Journal of Materials in Civil Engineering, 27(4), 04014141. doi:10.1061/(asce)mt.1943-5533.0001087

Kowalski, K., Król, J., Bańkowski, W., Radziszewski, P., & Sarnowski, M. (2017). Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent. Applied Sciences, 7(3), 216. doi:10.3390/app7030216

Ahmedzade, P., & Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. Journal of Hazardous Materials, 165(1-3), 300-305. doi:10.1016/j.jhazmat.2008.09.105

Pasetto, M., & Baldo, N. (2011). Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials, 25(8), 3458-3468. doi:10.1016/j.conbuildmat.2011.03.037

Pasetto, M., & Baldo, N. (2011). Performance comparative analysis of stone mastic asphalts with electric arc furnace steel slag: a laboratory evaluation. Materials and Structures, 45(3), 411-424. doi:10.1617/s11527-011-9773-2

Amin, M., Khan, M., & Saleem, M. (2016). Performance Evaluation of Asphalt Modified with Municipal Wastes for Sustainable Pavement Construction. Sustainability, 8(10), 949. doi:10.3390/su8100949

Rubio, M. C., Moreno, F., Belmonte, A., & Menéndez, A. (2010). Reuse of waste material from decorative quartz solid surfacing in the manufacture of hot bituminous mixes. Construction and Building Materials, 24(4), 610-618. doi:10.1016/j.conbuildmat.2009.09.004

Rubio, M. C., Menéndez, A., Moreno, F., Belmonte, A., & Ramírez, A. (2011). Propiedades mecánicas de mezclas bituminosas en caliente fabricadas con áridos reciclados de residuos Silestone®. Materiales de Construcción, 61(301), 49-60. doi:10.3989/mc.2011.52709

Baghaee Moghaddam, T., Karim, M. R., & Syammaun, T. (2012). Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles. Construction and Building Materials, 34, 236-242. doi:10.1016/j.conbuildmat.2012.02.054

Costa, L., Peralta, J., Oliveira, J., & Silva, H. (2017). A New Life for Cross-Linked Plastic Waste as Aggregates and Binder Modifier for Asphalt Mixtures. Applied Sciences, 7(6), 603. doi:10.3390/app7060603

Arabani, M. (2011). Effect of glass cullet on the improvement of the dynamic behaviour of asphalt concrete. Construction and Building Materials, 25(3), 1181-1185. doi:10.1016/j.conbuildmat.2010.09.043

Paranavithana, S., & Mohajerani, A. (2006). Effects of recycled concrete aggregates on properties of asphalt concrete. Resources, Conservation and Recycling, 48(1), 1-12. doi:10.1016/j.resconrec.2005.12.009

Pérez, I., Toledano, M., Gallego, J., & Taibo, J. (2007). Propiedades mecánicas de mezclas bituminosas en caliente fabricadas con áridos reciclados de residuos de construcción y demolición. Materiales de Construcción, 57(285). doi:10.3989/mc.2007.v57.i285.36

Bengtsson, M., & Evertsson, C. M. (2006). Measuring characteristics of aggregate material from vertical shaft impact crushers. Minerals Engineering, 19(15), 1479-1486. doi:10.1016/j.mineng.2006.08.003

Bouquety, M. N., Descantes, Y., Barcelo, L., de Larrard, F., & Clavaud, B. (2007). Experimental study of crushed aggregate shape. Construction and Building Materials, 21(4), 865-872. doi:10.1016/j.conbuildmat.2005.12.013

Hınıslıoglu, S. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, 58(3-4), 267-271. doi:10.1016/s0167-577x(03)00458-0

Sengul, C. E., Aksoy, A., Iskender, E., & Ozen, H. (2012). Hydrated lime treatment of asphalt concrete to increase permanent deformation resistance. Construction and Building Materials, 30, 139-148. doi:10.1016/j.conbuildmat.2011.12.031

Zoorob, S. E., & Suparma, L. B. (2000). Laboratory design and investigation of the properties of continuously graded Asphaltic concrete containing recycled plastics aggregate replacement (Plastiphalt). Cement and Concrete Composites, 22(4), 233-242. doi:10.1016/s0958-9465(00)00026-3

Sengoz, B., & Agar, E. (2007). Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt. Building and Environment, 42(10), 3621-3628. doi:10.1016/j.buildenv.2006.10.006

Gardete, D., Picado-Santos, L., & Capitão, S. (2018). Improving bituminous mixture performance by optimizing the design compaction energy – A cost effective approach for better pavements. Construction and Building Materials, 190, 1173-1181. doi:10.1016/j.conbuildmat.2018.09.169

Moreno-Navarro, F., & Rubio-Gámez, M. C. (2016). A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective. Construction and Building Materials, 113, 927-938. doi:10.1016/j.conbuildmat.2016.03.126

Lantsoght, E. O. L., van der Veen, C., & de Boer, A. (2016). Proposal for the fatigue strength of concrete under cycles of compression. Construction and Building Materials, 107, 138-156. doi:10.1016/j.conbuildmat.2016.01.007

Ortega, J. J., Ruiz, G., Yu, R. C., Afanador-García, N., Tarifa, M., Poveda, E., … Evangelista, F. (2018). Number of tests and corresponding error in concrete fatigue. International Journal of Fatigue, 116, 210-219. doi:10.1016/j.ijfatigue.2018.06.022

Weinberg, K., & Khosravani, M. R. (2018). On the tensile resistance of UHPC at impact. The European Physical Journal Special Topics, 227(1-2), 167-177. doi:10.1140/epjst/e2018-00057-1

Khosravani, M. R., Silani, M., & Weinberg, K. (2018). Fracture studies of Ultra-High Performance Concrete using dynamic Brazilian tests. Theoretical and Applied Fracture Mechanics, 93, 302-310. doi:10.1016/j.tafmec.2017.10.001

Di Benedetto, H., de La Roche, C., Baaj, H., Pronk, A., & Lundström, R. (2004). Fatigue of bituminous mixtures. Materials and Structures, 37(3), 202-216. doi:10.1007/bf02481620

Kakade, V. B., Reddy, M. A., & Reddy, K. S. (2018). Rutting performance of hydrated lime modified bituminous mixes. Construction and Building Materials, 186, 1-10. doi:10.1016/j.conbuildmat.2018.07.009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem