- -

Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip

Mostrar el registro completo del ítem

Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M. (2019). Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip. Sensors. 19(16)(3471):1-16. https://doi.org/10.3390/s19163471

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140865

Ficheros en el ítem

Metadatos del ítem

Título: Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip
Autor: Burriel-Valencia, Jordi Puche-Panadero, Rubén Martinez-Roman, Javier Sapena-Bano, Angel Pineda-Sanchez, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
Fecha difusión:
Resumen:
[EN] Fault diagnosis of rotor asymmetries of induction machines (IMs) using the stator current relies on the detection of the characteristic signatures of the fault harmonics in the current spectrum. In some scenarios, ...[+]
Palabras clave: Fault diagnosis , Induction machines , Fast Fourier transform (FFT) , Current envelope , Hilbert transform , Park's vector , Digital signal processor (DSP) , Field-programmable gate array (FPGA)
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19163471
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s19163471
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102175-B-I00/ES/DISEÑO DE MODELOS AVANZADOS DE SIMULACION DE AEROGENERADORES PARA EL DESARROLLO Y PUESTA A PUNTO DE SISTEMAS DE DIAGNOSTICO DE AVERIAS "ON-LINE"./
Agradecimientos:
This research was funded by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agencia Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of ...[+]
Tipo: Artículo

References

Chang, H.-C., Jheng, Y.-M., Kuo, C.-C., & Hsueh, Y.-M. (2019). Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach. Energies, 12(8), 1471. doi:10.3390/en12081471

Artigao, E., Koukoura, S., Honrubia-Escribano, A., Carroll, J., McDonald, A., & Gómez-Lázaro, E. (2018). Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train. Energies, 11(4), 960. doi:10.3390/en11040960

Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., & Riera-Guasp, M. (2015). Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor. IEEE Transactions on Industrial Electronics, 62(3), 1814-1825. doi:10.1109/tie.2014.2336604 [+]
Chang, H.-C., Jheng, Y.-M., Kuo, C.-C., & Hsueh, Y.-M. (2019). Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach. Energies, 12(8), 1471. doi:10.3390/en12081471

Artigao, E., Koukoura, S., Honrubia-Escribano, A., Carroll, J., McDonald, A., & Gómez-Lázaro, E. (2018). Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train. Energies, 11(4), 960. doi:10.3390/en11040960

Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., & Riera-Guasp, M. (2015). Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor. IEEE Transactions on Industrial Electronics, 62(3), 1814-1825. doi:10.1109/tie.2014.2336604

Culbert, I., & Letal, J. (2017). Signature Analysis for Online Motor Diagnostics: Early Detection of Rotating Machine Problems Prior to Failure. IEEE Industry Applications Magazine, 23(4), 76-81. doi:10.1109/mias.2016.2600684

Pandarakone, S. E., Mizuno, Y., & Nakamura, H. (2017). Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine. IEEE Transactions on Industry Applications, 53(3), 3049-3056. doi:10.1109/tia.2016.2639453

Kang, T.-J., Yang, C., Park, Y., Hyun, D., Lee, S. B., & Teska, M. (2018). Electrical Monitoring of Mechanical Defects in Induction Motor-Driven V-Belt–Pulley Speed Reduction Couplings. IEEE Transactions on Industry Applications, 54(3), 2255-2264. doi:10.1109/tia.2018.2805840

Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207

Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(4), 3961-3970. doi:10.1109/tia.2018.2821098

Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Rotor Faults and Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(3), 2981-2991. doi:10.1109/tia.2018.2805730

Jian, X., Li, W., Guo, X., & Wang, R. (2019). Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network. Sensors, 19(1), 122. doi:10.3390/s19010122

Yan, X., Sun, Z., Zhao, J., Shi, Z., & Zhang, C.-A. (2019). Fault Diagnosis of Active Magnetic Bearing–Rotor System via Vibration Images. Sensors, 19(2), 244. doi:10.3390/s19020244

Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478

Delgado-Arredondo, P. A., Morinigo-Sotelo, D., Osornio-Rios, R. A., Avina-Cervantes, J. G., Rostro-Gonzalez, H., & Romero-Troncoso, R. de J. (2017). Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, 83, 568-589. doi:10.1016/j.ymssp.2016.06.032

Ghanbari, T. (2016). Autocorrelation function-based technique for stator turn-fault detection of induction motor. IET Science, Measurement & Technology, 10(2), 100-110. doi:10.1049/iet-smt.2015.0118

Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014

Leite, V. C. M. N., Borges da Silva, J. G., Veloso, G. F. C., Borges da Silva, L. E., Lambert-Torres, G., Bonaldi, E. L., & de Lacerda de Oliveira, L. E. (2015). Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current. IEEE Transactions on Industrial Electronics, 62(3), 1855-1865. doi:10.1109/tie.2014.2345330

Aydin, I., Karakose, M., & Akin, E. (2011). A new method for early fault detection and diagnosis of broken rotor bars. Energy Conversion and Management, 52(4), 1790-1799. doi:10.1016/j.enconman.2010.11.018

Duan, J., Shi, T., Zhou, H., Xuan, J., & Zhang, Y. (2018). Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings. Sensors, 18(5), 1466. doi:10.3390/s18051466

Wang, J., Liu, S., Gao, R. X., & Yan, R. (2012). Current envelope analysis for defect identification and diagnosis in induction motors. Journal of Manufacturing Systems, 31(4), 380-387. doi:10.1016/j.jmsy.2012.06.005

Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., & Kanovic, Z. (2015). Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current. IEEE Transactions on Energy Conversion, 30(4), 1409-1419. doi:10.1109/tec.2015.2445216

Wu, T. Y., Lai, C. H., & Liu, D. C. (2016). Defect diagnostics of roller bearing using instantaneous frequency normalization under fluctuant rotating speed. Journal of Mechanical Science and Technology, 30(3), 1037-1048. doi:10.1007/s12206-016-0206-6

M. A. Cruz, A. J. Marques Cardoso, S. (2000). Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by Extended Park’s Vector Approach. Electric Machines & Power Systems, 28(4), 289-299. doi:10.1080/073135600268261

Henao, H., Capolino, G.-A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., … Hedayati-Kia, S. (2014). Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Industrial Electronics Magazine, 8(2), 31-42. doi:10.1109/mie.2013.2287651

Cruz, S. M. A., & Cardoso, A. J. M. (2001). Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach. IEEE Transactions on Industry Applications, 37(5), 1227-1233. doi:10.1109/28.952496

Tsoumas, I. P., Georgoulas, G., Mitronikas, E. D., & Safacas, A. N. (2008). Asynchronous Machine Rotor Fault Diagnosis Technique Using Complex Wavelets. IEEE Transactions on Energy Conversion, 23(2), 444-459. doi:10.1109/tec.2007.895872

Corne, B., Vervisch, B., Derammelaere, S., Knockaert, J., & Desmet, J. (2018). The reflection of evolving bearing faults in the stator current’s extended park vector approach for induction machines. Mechanical Systems and Signal Processing, 107, 168-182. doi:10.1016/j.ymssp.2017.12.010

Georgakopoulos, I. P., Mitronikas, E. D., & Safacas, A. N. (2011). Detection of Induction Motor Faults in Inverter Drives Using Inverter Input Current Analysis. IEEE Transactions on Industrial Electronics, 58(9), 4365-4373. doi:10.1109/tie.2010.2093476

Choi, S., Akin, B., Rahimian, M. M., & Toliyat, H. A. (2011). Implementation of a Fault-Diagnosis Algorithm for Induction Machines Based on Advanced Digital-Signal-Processing Techniques. IEEE Transactions on Industrial Electronics, 58(3), 937-948. doi:10.1109/tie.2010.2048837

White, D., William, P., Hoffman, M., & Balkir, S. (2013). Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification. Sensors, 13(8), 9604-9623. doi:10.3390/s130809604

Wu, F., & Zhao, J. (2016). A Real-Time Multiple Open-Circuit Fault Diagnosis Method in Voltage-Source-Inverter Fed Vector Controlled Drives. IEEE Transactions on Power Electronics, 31(2), 1425-1437. doi:10.1109/tpel.2015.2422131

Estima, J. O., & Marques Cardoso, A. J. (2013). A New Algorithm for Real-Time Multiple Open-Circuit Fault Diagnosis in Voltage-Fed PWM Motor Drives by the Reference Current Errors. IEEE Transactions on Industrial Electronics, 60(8), 3496-3505. doi:10.1109/tie.2012.2188877

Naha, A., Samanta, A. K., Routray, A., & Deb, A. K. (2017). Low Complexity Motor Current Signature Analysis Using Sub-Nyquist Strategy With Reduced Data Length. IEEE Transactions on Instrumentation and Measurement, 66(12), 3249-3259. doi:10.1109/tim.2017.2737879

Moussa, M. A., Boucherma, M., & Khezzar, A. (2017). A Detection Method for Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of the Sliding Discrete Fourier Transform. IEEE Transactions on Power Electronics, 32(7), 5560-5572. doi:10.1109/tpel.2016.2605821

Shahbazi, M., Saadate, S., Poure, P., & Zolghadri, M. (2016). Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter. Electric Power Systems Research, 137, 104-112. doi:10.1016/j.epsr.2016.04.004

Kamel, T., Biletskiy, Y., & Chang, L. (2015). Fault Diagnoses for Industrial Grid-Connected Converters in the Power Distribution Systems. IEEE Transactions on Industrial Electronics, 62(10), 6496-6507. doi:10.1109/tie.2015.2420627

Nguyen, H., Kim, J., & Kim, J.-M. (2018). Optimal Sub-Band Analysis Based on the Envelope Power Spectrum for Effective Fault Detection in Bearing under Variable, Low Speeds. Sensors, 18(5), 1389. doi:10.3390/s18051389

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem