Chang, H.-C., Jheng, Y.-M., Kuo, C.-C., & Hsueh, Y.-M. (2019). Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach. Energies, 12(8), 1471. doi:10.3390/en12081471
Artigao, E., Koukoura, S., Honrubia-Escribano, A., Carroll, J., McDonald, A., & Gómez-Lázaro, E. (2018). Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train. Energies, 11(4), 960. doi:10.3390/en11040960
Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., & Riera-Guasp, M. (2015). Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor. IEEE Transactions on Industrial Electronics, 62(3), 1814-1825. doi:10.1109/tie.2014.2336604
[+]
Chang, H.-C., Jheng, Y.-M., Kuo, C.-C., & Hsueh, Y.-M. (2019). Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach. Energies, 12(8), 1471. doi:10.3390/en12081471
Artigao, E., Koukoura, S., Honrubia-Escribano, A., Carroll, J., McDonald, A., & Gómez-Lázaro, E. (2018). Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train. Energies, 11(4), 960. doi:10.3390/en11040960
Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., & Riera-Guasp, M. (2015). Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor. IEEE Transactions on Industrial Electronics, 62(3), 1814-1825. doi:10.1109/tie.2014.2336604
Culbert, I., & Letal, J. (2017). Signature Analysis for Online Motor Diagnostics: Early Detection of Rotating Machine Problems Prior to Failure. IEEE Industry Applications Magazine, 23(4), 76-81. doi:10.1109/mias.2016.2600684
Pandarakone, S. E., Mizuno, Y., & Nakamura, H. (2017). Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine. IEEE Transactions on Industry Applications, 53(3), 3049-3056. doi:10.1109/tia.2016.2639453
Kang, T.-J., Yang, C., Park, Y., Hyun, D., Lee, S. B., & Teska, M. (2018). Electrical Monitoring of Mechanical Defects in Induction Motor-Driven V-Belt–Pulley Speed Reduction Couplings. IEEE Transactions on Industry Applications, 54(3), 2255-2264. doi:10.1109/tia.2018.2805840
Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207
Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(4), 3961-3970. doi:10.1109/tia.2018.2821098
Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Rotor Faults and Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(3), 2981-2991. doi:10.1109/tia.2018.2805730
Jian, X., Li, W., Guo, X., & Wang, R. (2019). Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network. Sensors, 19(1), 122. doi:10.3390/s19010122
Yan, X., Sun, Z., Zhao, J., Shi, Z., & Zhang, C.-A. (2019). Fault Diagnosis of Active Magnetic Bearing–Rotor System via Vibration Images. Sensors, 19(2), 244. doi:10.3390/s19020244
Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478
Delgado-Arredondo, P. A., Morinigo-Sotelo, D., Osornio-Rios, R. A., Avina-Cervantes, J. G., Rostro-Gonzalez, H., & Romero-Troncoso, R. de J. (2017). Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, 83, 568-589. doi:10.1016/j.ymssp.2016.06.032
Ghanbari, T. (2016). Autocorrelation function-based technique for stator turn-fault detection of induction motor. IET Science, Measurement & Technology, 10(2), 100-110. doi:10.1049/iet-smt.2015.0118
Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014
Leite, V. C. M. N., Borges da Silva, J. G., Veloso, G. F. C., Borges da Silva, L. E., Lambert-Torres, G., Bonaldi, E. L., & de Lacerda de Oliveira, L. E. (2015). Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current. IEEE Transactions on Industrial Electronics, 62(3), 1855-1865. doi:10.1109/tie.2014.2345330
Aydin, I., Karakose, M., & Akin, E. (2011). A new method for early fault detection and diagnosis of broken rotor bars. Energy Conversion and Management, 52(4), 1790-1799. doi:10.1016/j.enconman.2010.11.018
Duan, J., Shi, T., Zhou, H., Xuan, J., & Zhang, Y. (2018). Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings. Sensors, 18(5), 1466. doi:10.3390/s18051466
Wang, J., Liu, S., Gao, R. X., & Yan, R. (2012). Current envelope analysis for defect identification and diagnosis in induction motors. Journal of Manufacturing Systems, 31(4), 380-387. doi:10.1016/j.jmsy.2012.06.005
Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., & Kanovic, Z. (2015). Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current. IEEE Transactions on Energy Conversion, 30(4), 1409-1419. doi:10.1109/tec.2015.2445216
Wu, T. Y., Lai, C. H., & Liu, D. C. (2016). Defect diagnostics of roller bearing using instantaneous frequency normalization under fluctuant rotating speed. Journal of Mechanical Science and Technology, 30(3), 1037-1048. doi:10.1007/s12206-016-0206-6
M. A. Cruz, A. J. Marques Cardoso, S. (2000). Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by Extended Park’s Vector Approach. Electric Machines & Power Systems, 28(4), 289-299. doi:10.1080/073135600268261
Henao, H., Capolino, G.-A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., … Hedayati-Kia, S. (2014). Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Industrial Electronics Magazine, 8(2), 31-42. doi:10.1109/mie.2013.2287651
Cruz, S. M. A., & Cardoso, A. J. M. (2001). Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach. IEEE Transactions on Industry Applications, 37(5), 1227-1233. doi:10.1109/28.952496
Tsoumas, I. P., Georgoulas, G., Mitronikas, E. D., & Safacas, A. N. (2008). Asynchronous Machine Rotor Fault Diagnosis Technique Using Complex Wavelets. IEEE Transactions on Energy Conversion, 23(2), 444-459. doi:10.1109/tec.2007.895872
Corne, B., Vervisch, B., Derammelaere, S., Knockaert, J., & Desmet, J. (2018). The reflection of evolving bearing faults in the stator current’s extended park vector approach for induction machines. Mechanical Systems and Signal Processing, 107, 168-182. doi:10.1016/j.ymssp.2017.12.010
Georgakopoulos, I. P., Mitronikas, E. D., & Safacas, A. N. (2011). Detection of Induction Motor Faults in Inverter Drives Using Inverter Input Current Analysis. IEEE Transactions on Industrial Electronics, 58(9), 4365-4373. doi:10.1109/tie.2010.2093476
Choi, S., Akin, B., Rahimian, M. M., & Toliyat, H. A. (2011). Implementation of a Fault-Diagnosis Algorithm for Induction Machines Based on Advanced Digital-Signal-Processing Techniques. IEEE Transactions on Industrial Electronics, 58(3), 937-948. doi:10.1109/tie.2010.2048837
White, D., William, P., Hoffman, M., & Balkir, S. (2013). Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification. Sensors, 13(8), 9604-9623. doi:10.3390/s130809604
Wu, F., & Zhao, J. (2016). A Real-Time Multiple Open-Circuit Fault Diagnosis Method in Voltage-Source-Inverter Fed Vector Controlled Drives. IEEE Transactions on Power Electronics, 31(2), 1425-1437. doi:10.1109/tpel.2015.2422131
Estima, J. O., & Marques Cardoso, A. J. (2013). A New Algorithm for Real-Time Multiple Open-Circuit Fault Diagnosis in Voltage-Fed PWM Motor Drives by the Reference Current Errors. IEEE Transactions on Industrial Electronics, 60(8), 3496-3505. doi:10.1109/tie.2012.2188877
Naha, A., Samanta, A. K., Routray, A., & Deb, A. K. (2017). Low Complexity Motor Current Signature Analysis Using Sub-Nyquist Strategy With Reduced Data Length. IEEE Transactions on Instrumentation and Measurement, 66(12), 3249-3259. doi:10.1109/tim.2017.2737879
Moussa, M. A., Boucherma, M., & Khezzar, A. (2017). A Detection Method for Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of the Sliding Discrete Fourier Transform. IEEE Transactions on Power Electronics, 32(7), 5560-5572. doi:10.1109/tpel.2016.2605821
Shahbazi, M., Saadate, S., Poure, P., & Zolghadri, M. (2016). Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter. Electric Power Systems Research, 137, 104-112. doi:10.1016/j.epsr.2016.04.004
Kamel, T., Biletskiy, Y., & Chang, L. (2015). Fault Diagnoses for Industrial Grid-Connected Converters in the Power Distribution Systems. IEEE Transactions on Industrial Electronics, 62(10), 6496-6507. doi:10.1109/tie.2015.2420627
Nguyen, H., Kim, J., & Kim, J.-M. (2018). Optimal Sub-Band Analysis Based on the Envelope Power Spectrum for Effective Fault Detection in Bearing under Variable, Low Speeds. Sensors, 18(5), 1389. doi:10.3390/s18051389
[-]