Mostrar el registro sencillo del ítem
dc.contributor.author | Burriel-Valencia, Jordi | es_ES |
dc.contributor.author | Puche-Panadero, Rubén | es_ES |
dc.contributor.author | Martinez-Roman, Javier | es_ES |
dc.contributor.author | Sapena-Bano, Angel | es_ES |
dc.contributor.author | Pineda-Sanchez, Manuel | es_ES |
dc.date.accessioned | 2020-04-17T12:49:00Z | |
dc.date.available | 2020-04-17T12:49:00Z | |
dc.date.issued | 2019-08-20 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140865 | |
dc.description.abstract | [EN] Fault diagnosis of rotor asymmetries of induction machines (IMs) using the stator current relies on the detection of the characteristic signatures of the fault harmonics in the current spectrum. In some scenarios, such as large induction machines running at a very low slip, or unloaded machines tested offline, this technique may fail. In these scenarios, the fault harmonics are very close to the frequency of the fundamental component, and have a low amplitude, so that they may remain undetected, buried under the fundamental's leakage, until the damage is severe. To avoid false positives, a proven approach is to search for the fault harmonics in the current envelope, instead of the current itself, because in this case the spectrum is free from the leakage of the fundamental. Besides, the fault harmonics appear at a very low frequency. Nevertheless, building the current spectrum is costly in terms of computing complexity, as in the case of the Hilbert transform, or hardware resources, as in the need for simultaneously sampling three stator currents in the case of the extended current Park's vector approach (EPVA). In this work, a novel method is proposed to avoid this problem. It is based on sampling a phase current just twice per current cycle, with a fixed delay with respect to its zero crossings. It is shown that the spectrum of this reduced set of current samples contains the same fault harmonics as the spectrum of the full-length current envelope, despite using a minimal amount of computing resources. The proposed approach is cost-effective, because the computational requirements for building the current envelope are reduced to less than 1% of those required by other conventional methods, in terms of storage and computing time. In this way, it can be implemented with low-cost embedded devices for on-line fault diagnosis. The proposed approach is introduced theoretically and validated experimentally, using a commercial induction motor with a broken bar under different load and supply conditions. Besides, the proposed approach has been implemented on a low-cost embedded device, which can be accessed on-line for remote fault diagnosis. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish "Ministerio de Ciencia, Innovacion y Universidades (MCIU)", the "Agencia Estatal de Investigacion (AEI)" and the "Fondo Europeo de Desarrollo Regional (FEDER)" in the framework of the "Proyectos I+D+i - Retos Investigacion 2018", project reference RTI2018-102175-B-I00 (MCIU/AEI/FEDER, UE). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Fault diagnosis | es_ES |
dc.subject | Induction machines | es_ES |
dc.subject | Fast Fourier transform (FFT) | es_ES |
dc.subject | Current envelope | es_ES |
dc.subject | Hilbert transform | es_ES |
dc.subject | Park's vector | es_ES |
dc.subject | Digital signal processor (DSP) | es_ES |
dc.subject | Field-programmable gate array (FPGA) | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19163471 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102175-B-I00/ES/DISEÑO DE MODELOS AVANZADOS DE SIMULACION DE AEROGENERADORES PARA EL DESARROLLO Y PUESTA A PUNTO DE SISTEMAS DE DIAGNOSTICO DE AVERIAS "ON-LINE"./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M. (2019). Cost-Effective Reduced Envelope of the Stator Current via Synchronous Sampling for the Diagnosis of Rotor Asymmetries in Induction Machines Working at Very Low Slip. Sensors. 19(16)(3471):1-16. https://doi.org/10.3390/s19163471 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19163471 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19(16) | es_ES |
dc.description.issue | 3471 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\400260 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Chang, H.-C., Jheng, Y.-M., Kuo, C.-C., & Hsueh, Y.-M. (2019). Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach. Energies, 12(8), 1471. doi:10.3390/en12081471 | es_ES |
dc.description.references | Artigao, E., Koukoura, S., Honrubia-Escribano, A., Carroll, J., McDonald, A., & Gómez-Lázaro, E. (2018). Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train. Energies, 11(4), 960. doi:10.3390/en11040960 | es_ES |
dc.description.references | Climente-Alarcon, V., Antonino-Daviu, J. A., Strangas, E. G., & Riera-Guasp, M. (2015). Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor. IEEE Transactions on Industrial Electronics, 62(3), 1814-1825. doi:10.1109/tie.2014.2336604 | es_ES |
dc.description.references | Culbert, I., & Letal, J. (2017). Signature Analysis for Online Motor Diagnostics: Early Detection of Rotating Machine Problems Prior to Failure. IEEE Industry Applications Magazine, 23(4), 76-81. doi:10.1109/mias.2016.2600684 | es_ES |
dc.description.references | Pandarakone, S. E., Mizuno, Y., & Nakamura, H. (2017). Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine. IEEE Transactions on Industry Applications, 53(3), 3049-3056. doi:10.1109/tia.2016.2639453 | es_ES |
dc.description.references | Kang, T.-J., Yang, C., Park, Y., Hyun, D., Lee, S. B., & Teska, M. (2018). Electrical Monitoring of Mechanical Defects in Induction Motor-Driven V-Belt–Pulley Speed Reduction Couplings. IEEE Transactions on Industry Applications, 54(3), 2255-2264. doi:10.1109/tia.2018.2805840 | es_ES |
dc.description.references | Puche-Panadero, R., Pineda-Sanchez, M., Riera-Guasp, M., Roger-Folch, J., Hurtado-Perez, E., & Perez-Cruz, J. (2009). Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip. IEEE Transactions on Energy Conversion, 24(1), 52-59. doi:10.1109/tec.2008.2003207 | es_ES |
dc.description.references | Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(4), 3961-3970. doi:10.1109/tia.2018.2821098 | es_ES |
dc.description.references | Mirzaeva, G., & Saad, K. I. (2018). Advanced Diagnosis of Rotor Faults and Eccentricity in Induction Motors Based on Internal Flux Measurement. IEEE Transactions on Industry Applications, 54(3), 2981-2991. doi:10.1109/tia.2018.2805730 | es_ES |
dc.description.references | Jian, X., Li, W., Guo, X., & Wang, R. (2019). Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network. Sensors, 19(1), 122. doi:10.3390/s19010122 | es_ES |
dc.description.references | Yan, X., Sun, Z., Zhao, J., Shi, Z., & Zhang, C.-A. (2019). Fault Diagnosis of Active Magnetic Bearing–Rotor System via Vibration Images. Sensors, 19(2), 244. doi:10.3390/s19020244 | es_ES |
dc.description.references | Martinez, J., Belahcen, A., & Muetze, A. (2017). Analysis of the Vibration Magnitude of an Induction Motor With Different Numbers of Broken Bars. IEEE Transactions on Industry Applications, 53(3), 2711-2720. doi:10.1109/tia.2017.2657478 | es_ES |
dc.description.references | Delgado-Arredondo, P. A., Morinigo-Sotelo, D., Osornio-Rios, R. A., Avina-Cervantes, J. G., Rostro-Gonzalez, H., & Romero-Troncoso, R. de J. (2017). Methodology for fault detection in induction motors via sound and vibration signals. Mechanical Systems and Signal Processing, 83, 568-589. doi:10.1016/j.ymssp.2016.06.032 | es_ES |
dc.description.references | Ghanbari, T. (2016). Autocorrelation function-based technique for stator turn-fault detection of induction motor. IET Science, Measurement & Technology, 10(2), 100-110. doi:10.1049/iet-smt.2015.0118 | es_ES |
dc.description.references | Abd-el -Malek, M., Abdelsalam, A. K., & Hassan, O. E. (2017). Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform. Mechanical Systems and Signal Processing, 93, 332-350. doi:10.1016/j.ymssp.2017.02.014 | es_ES |
dc.description.references | Leite, V. C. M. N., Borges da Silva, J. G., Veloso, G. F. C., Borges da Silva, L. E., Lambert-Torres, G., Bonaldi, E. L., & de Lacerda de Oliveira, L. E. (2015). Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current. IEEE Transactions on Industrial Electronics, 62(3), 1855-1865. doi:10.1109/tie.2014.2345330 | es_ES |
dc.description.references | Aydin, I., Karakose, M., & Akin, E. (2011). A new method for early fault detection and diagnosis of broken rotor bars. Energy Conversion and Management, 52(4), 1790-1799. doi:10.1016/j.enconman.2010.11.018 | es_ES |
dc.description.references | Duan, J., Shi, T., Zhou, H., Xuan, J., & Zhang, Y. (2018). Multiband Envelope Spectra Extraction for Fault Diagnosis of Rolling Element Bearings. Sensors, 18(5), 1466. doi:10.3390/s18051466 | es_ES |
dc.description.references | Wang, J., Liu, S., Gao, R. X., & Yan, R. (2012). Current envelope analysis for defect identification and diagnosis in induction motors. Journal of Manufacturing Systems, 31(4), 380-387. doi:10.1016/j.jmsy.2012.06.005 | es_ES |
dc.description.references | Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., & Kanovic, Z. (2015). Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current. IEEE Transactions on Energy Conversion, 30(4), 1409-1419. doi:10.1109/tec.2015.2445216 | es_ES |
dc.description.references | Wu, T. Y., Lai, C. H., & Liu, D. C. (2016). Defect diagnostics of roller bearing using instantaneous frequency normalization under fluctuant rotating speed. Journal of Mechanical Science and Technology, 30(3), 1037-1048. doi:10.1007/s12206-016-0206-6 | es_ES |
dc.description.references | M. A. Cruz, A. J. Marques Cardoso, S. (2000). Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by Extended Park’s Vector Approach. Electric Machines & Power Systems, 28(4), 289-299. doi:10.1080/073135600268261 | es_ES |
dc.description.references | Henao, H., Capolino, G.-A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C., Strangas, E., … Hedayati-Kia, S. (2014). Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Industrial Electronics Magazine, 8(2), 31-42. doi:10.1109/mie.2013.2287651 | es_ES |
dc.description.references | Cruz, S. M. A., & Cardoso, A. J. M. (2001). Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park’s vector approach. IEEE Transactions on Industry Applications, 37(5), 1227-1233. doi:10.1109/28.952496 | es_ES |
dc.description.references | Tsoumas, I. P., Georgoulas, G., Mitronikas, E. D., & Safacas, A. N. (2008). Asynchronous Machine Rotor Fault Diagnosis Technique Using Complex Wavelets. IEEE Transactions on Energy Conversion, 23(2), 444-459. doi:10.1109/tec.2007.895872 | es_ES |
dc.description.references | Corne, B., Vervisch, B., Derammelaere, S., Knockaert, J., & Desmet, J. (2018). The reflection of evolving bearing faults in the stator current’s extended park vector approach for induction machines. Mechanical Systems and Signal Processing, 107, 168-182. doi:10.1016/j.ymssp.2017.12.010 | es_ES |
dc.description.references | Georgakopoulos, I. P., Mitronikas, E. D., & Safacas, A. N. (2011). Detection of Induction Motor Faults in Inverter Drives Using Inverter Input Current Analysis. IEEE Transactions on Industrial Electronics, 58(9), 4365-4373. doi:10.1109/tie.2010.2093476 | es_ES |
dc.description.references | Choi, S., Akin, B., Rahimian, M. M., & Toliyat, H. A. (2011). Implementation of a Fault-Diagnosis Algorithm for Induction Machines Based on Advanced Digital-Signal-Processing Techniques. IEEE Transactions on Industrial Electronics, 58(3), 937-948. doi:10.1109/tie.2010.2048837 | es_ES |
dc.description.references | White, D., William, P., Hoffman, M., & Balkir, S. (2013). Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification. Sensors, 13(8), 9604-9623. doi:10.3390/s130809604 | es_ES |
dc.description.references | Wu, F., & Zhao, J. (2016). A Real-Time Multiple Open-Circuit Fault Diagnosis Method in Voltage-Source-Inverter Fed Vector Controlled Drives. IEEE Transactions on Power Electronics, 31(2), 1425-1437. doi:10.1109/tpel.2015.2422131 | es_ES |
dc.description.references | Estima, J. O., & Marques Cardoso, A. J. (2013). A New Algorithm for Real-Time Multiple Open-Circuit Fault Diagnosis in Voltage-Fed PWM Motor Drives by the Reference Current Errors. IEEE Transactions on Industrial Electronics, 60(8), 3496-3505. doi:10.1109/tie.2012.2188877 | es_ES |
dc.description.references | Naha, A., Samanta, A. K., Routray, A., & Deb, A. K. (2017). Low Complexity Motor Current Signature Analysis Using Sub-Nyquist Strategy With Reduced Data Length. IEEE Transactions on Instrumentation and Measurement, 66(12), 3249-3259. doi:10.1109/tim.2017.2737879 | es_ES |
dc.description.references | Moussa, M. A., Boucherma, M., & Khezzar, A. (2017). A Detection Method for Induction Motor Bar Fault Using Sidelobes Leakage Phenomenon of the Sliding Discrete Fourier Transform. IEEE Transactions on Power Electronics, 32(7), 5560-5572. doi:10.1109/tpel.2016.2605821 | es_ES |
dc.description.references | Shahbazi, M., Saadate, S., Poure, P., & Zolghadri, M. (2016). Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter. Electric Power Systems Research, 137, 104-112. doi:10.1016/j.epsr.2016.04.004 | es_ES |
dc.description.references | Kamel, T., Biletskiy, Y., & Chang, L. (2015). Fault Diagnoses for Industrial Grid-Connected Converters in the Power Distribution Systems. IEEE Transactions on Industrial Electronics, 62(10), 6496-6507. doi:10.1109/tie.2015.2420627 | es_ES |
dc.description.references | Nguyen, H., Kim, J., & Kim, J.-M. (2018). Optimal Sub-Band Analysis Based on the Envelope Power Spectrum for Effective Fault Detection in Bearing under Variable, Low Speeds. Sensors, 18(5), 1389. doi:10.3390/s18051389 | es_ES |