- -

Automatic Generation of Ortho-Photo Texture from Digital Elevation Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Generation of Ortho-Photo Texture from Digital Elevation Model

Mostrar el registro completo del ítem

Lee, E.; Jeong, Y.; Hassan Mohamed, H.; Shin. Byeong-Seok; Park, JH. (2017). Automatic Generation of Ortho-Photo Texture from Digital Elevation Model. Journal of Signal Processing Systems. 89(1):73-80. https://doi.org/10.1007/s11265-016-1220-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140875

Ficheros en el ítem

Metadatos del ítem

Título: Automatic Generation of Ortho-Photo Texture from Digital Elevation Model
Autor: Lee, Eun-Seok Jeong, Young-Sik Hassan Mohamed, Houcine Shin. Byeong-Seok Park, Jong Hyuk
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] We propose the automatic generation of the ortho-photo data which support realistic scenes for DEM by texture mapping. This ortho-photo data is automatically generated by pattern recognition techniques using Bayesian ...[+]
Palabras clave: Terrain rendering , Ortho-photo generation , Automatic generation , Pattern recognition
Derechos de uso: Cerrado
Fuente:
Journal of Signal Processing Systems. (issn: 1939-8018 )
DOI: 10.1007/s11265-016-1220-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11265-016-1220-8
Agradecimientos:
This work was supported by INHA UNIVERSITY Research Grant.
Tipo: Artículo

References

Dick, C., Krüger, J., & Westermann, R. (2009). GPU ray casting for scalable terrain rendering. In Proceedings of EUROGRAPHICS, 50, 43–50.

Qiu, M., & Sha, E. H.-M. (2009). Cost Minimization While Satisfying Hard/Soft Timing Constraints for Heterogeneous Embedded Systems. ACM Transactions on Design Automation of Electronic Systems, 14(2), 25:1–25:30.

Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., & Gu, Z. (2012). Online optimization for scheduling preemptable tasks on IaaS cloud systems. Journal of Parallel and Distributed Computing, 72(5), 666–677. doi: 10.1016/j.jpdc.2012.02.002 . [+]
Dick, C., Krüger, J., & Westermann, R. (2009). GPU ray casting for scalable terrain rendering. In Proceedings of EUROGRAPHICS, 50, 43–50.

Qiu, M., & Sha, E. H.-M. (2009). Cost Minimization While Satisfying Hard/Soft Timing Constraints for Heterogeneous Embedded Systems. ACM Transactions on Design Automation of Electronic Systems, 14(2), 25:1–25:30.

Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., & Gu, Z. (2012). Online optimization for scheduling preemptable tasks on IaaS cloud systems. Journal of Parallel and Distributed Computing, 72(5), 666–677. doi: 10.1016/j.jpdc.2012.02.002 .

Lee, E. S., Lee, J. H., & Shin, B. S. (2014). Bimodal vertex splitting: acceleration of quadtree triangulation for terrain rendering. IEICE TRANSACTIONS on Information and Systems, 97(6), 1624–1633.

Mandelbrot, B. (1983). The fractal geometry of nature, 173, Sanfransisco: Freeman.

Kelley, A. D., Malin, M. C.,& Nielson, G. M. (1988). Terrain simulation using a model of stream erosion. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques. New York: SIGGRAPH ’88. ACM, pp. 263–268

Musgrave, F. K., Kolb, C. E., & Mace, R. S. (1989). The synthesis and rendering of eroded fractal terrains. In ACM Siggraph Computer Graphics, 23, 41–50.

Lewis, J. P. (1987). Generalized stochastic subdivision. ACM Transactions on Graphics (TOG), 6(3), 167–190.

Voss, R. F. (1985). Random fractal forgeries. In Fundamental algorithms for computer graphics, pp. 805–835.

Lau, W. C., Erramilli, A., Wang, J. L., & Willinger, W. (1995). Self-similar traffic generation: the random midpoint displacement algorithm and its properties. In Proc of ICC’95 Seattle,‘Gateway to Globalization’, 1995 IEEE International Conference on Communications, 1, 466–472.

Szeliski, R., & Terzopoulos, D. (1989). From splines to fractals. In ACM Siggraph Computer Graphics, 23, 51–60.

Nagashima, K. (1998). Computer generation of eroded valley and mountain terrains. The Visual Computer, 13(9), 456–464.

Cordonnier, G., Braun, J., Cani, M.-P., Benes, B., Galin, E., Peytavie, A., & Guérin, E. (2016). Large scale terrain generation from tectonic uplift and fluvial erosion. In Computer Graphics Forum, 35, 165–175.

Warszawski, K. K., & Nikiel, S. S. (2014). A proposition of erosion algorithm for terrain models with hardness layer. Journal of Theoretical and Applied Computer Science, 8(1), 76–84.

Zeng, T., Zhu, M., Hu, C., Tian, W., & Long, T. (2015). Experimental results and algorithm analysis of DEM generation using bistatic SAR interferometry with stationary receiver. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 5835–5852.

Ambrosino, R., Baselice, F., Ferraioli, G., & Schirinzi, G. (2014). InSAR urban DEM generation using Extended Kalman filter. In 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 402–405.

Zhang, L., Jiang, H., Liao, M., Balz, T., & Wang, T. (2014). Joint use of multi-orbit high-resolution SAR interferometry for DEM generation in mountainous area. In 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 406–409.

Ferretti, A., Fumagalli, A., Novali, F., Rucci, A., Prati, C., & Rocca, F. (2012). DEM reconstruction with SqueeSAR. In Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), pp. 198–201.

Schmitt, M., & Stilla, U. (2014). Maximum-likelihood estimation for multi-aspect multi-baseline SAR interferometry of urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 68–77.

Bergman, N., Ljung, L., & Gustafsson, F. (1999). Terrain navigation using Bayesian statistics. IEEE control systems, 19(3), 33–40.

Whitlock, M. C. (2005). Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. Journal of Evolutionary Biology, 18(5), 1368–1373.

Zhou, H., Sun, J., Turk, G., & Rehg, J. M. (2007). Terrain synthesis from digital elevation models. IEEE transactions on visualization and computer graphics, 13(4), 834–848.

Tasse, F. P. (2011). Distributed texture-based terrain synthesis. Ph.D. thesis, Western Cape: University of Cape town press.

Bunnell, M. (2005). Dynamic ambient occlusion and indirect lighting. Gpu gems, 2(2), 223–233.

Shanmugam, P., & Arikan, O. (2007). Hardware accelerated ambient occlusion techniques on GPUs. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, pp. 73–80.

Gunn, S. R. (1999). On the discrete representation of the Laplacian of Gaussian. Pattern Recognition, 32(8), 1463–1472.

Lee, E.S., Lee, J.H., & Shin, B.S. (2015). Vertex relocation: a feature-preserved terrain rendering method for pervasive computing environments. Multimedia Tools and Applications, pp. 1–17.

John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pp. 338–345.

Dehak, N., Dehak, R., Glass, J. R., Reynolds, D. A., & Kenny, P. (2010). In Odyssey cosine similarity scoring without score normalization techniques, p. 15.

Bishop, C. M. (2006). Pattern recognition. Machine Learning,p. 128.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem