- -

Automatic Generation of Ortho-Photo Texture from Digital Elevation Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Generation of Ortho-Photo Texture from Digital Elevation Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lee, Eun-Seok es_ES
dc.contributor.author Jeong, Young-Sik es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.contributor.author Shin. Byeong-Seok es_ES
dc.contributor.author Park, Jong Hyuk es_ES
dc.date.accessioned 2020-04-17T12:49:15Z
dc.date.available 2020-04-17T12:49:15Z
dc.date.issued 2017-10 es_ES
dc.identifier.issn 1939-8018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140875
dc.description.abstract [EN] We propose the automatic generation of the ortho-photo data which support realistic scenes for DEM by texture mapping. This ortho-photo data is automatically generated by pattern recognition techniques using Bayesian classifier which uses the features extracted from a DEM and its geo-referenced ortho-photo data as training sets. We defined the various features of each texel such as its height, slope angle, slope direction, surface curvature, hue, saturation and brightness from the training datasets. The proposed method makes possible for mapping texture of a realistic ortho-photo data to virtual terrain data which are unable to take satellite photo or aerial photo. These case are often in of computer game and digital movie area. Also, generating ortho-photo with the enlarged DEM, it does not cause the aliasing from the difference of resolution. It makes very similar images with real photography by shading and efficiently handles ortho-photo data and elevation data occupied enormous storage in cloud computing environment. es_ES
dc.description.sponsorship This work was supported by INHA UNIVERSITY Research Grant. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Signal Processing Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Terrain rendering es_ES
dc.subject Ortho-photo generation es_ES
dc.subject Automatic generation es_ES
dc.subject Pattern recognition es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Automatic Generation of Ortho-Photo Texture from Digital Elevation Model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11265-016-1220-8 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Lee, E.; Jeong, Y.; Hassan Mohamed, H.; Shin. Byeong-Seok; Park, JH. (2017). Automatic Generation of Ortho-Photo Texture from Digital Elevation Model. Journal of Signal Processing Systems. 89(1):73-80. https://doi.org/10.1007/s11265-016-1220-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11265-016-1220-8 es_ES
dc.description.upvformatpinicio 73 es_ES
dc.description.upvformatpfin 80 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 89 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\348702 es_ES
dc.contributor.funder Inha University
dc.description.references Dick, C., Krüger, J., & Westermann, R. (2009). GPU ray casting for scalable terrain rendering. In Proceedings of EUROGRAPHICS, 50, 43–50. es_ES
dc.description.references Qiu, M., & Sha, E. H.-M. (2009). Cost Minimization While Satisfying Hard/Soft Timing Constraints for Heterogeneous Embedded Systems. ACM Transactions on Design Automation of Electronic Systems, 14(2), 25:1–25:30. es_ES
dc.description.references Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., & Gu, Z. (2012). Online optimization for scheduling preemptable tasks on IaaS cloud systems. Journal of Parallel and Distributed Computing, 72(5), 666–677. doi: 10.1016/j.jpdc.2012.02.002 . es_ES
dc.description.references Lee, E. S., Lee, J. H., & Shin, B. S. (2014). Bimodal vertex splitting: acceleration of quadtree triangulation for terrain rendering. IEICE TRANSACTIONS on Information and Systems, 97(6), 1624–1633. es_ES
dc.description.references Mandelbrot, B. (1983). The fractal geometry of nature, 173, Sanfransisco: Freeman. es_ES
dc.description.references Kelley, A. D., Malin, M. C.,& Nielson, G. M. (1988). Terrain simulation using a model of stream erosion. In Proceedings of the 15th annual conference on Computer graphics and interactive techniques. New York: SIGGRAPH ’88. ACM, pp. 263–268 es_ES
dc.description.references Musgrave, F. K., Kolb, C. E., & Mace, R. S. (1989). The synthesis and rendering of eroded fractal terrains. In ACM Siggraph Computer Graphics, 23, 41–50. es_ES
dc.description.references Lewis, J. P. (1987). Generalized stochastic subdivision. ACM Transactions on Graphics (TOG), 6(3), 167–190. es_ES
dc.description.references Voss, R. F. (1985). Random fractal forgeries. In Fundamental algorithms for computer graphics, pp. 805–835. es_ES
dc.description.references Lau, W. C., Erramilli, A., Wang, J. L., & Willinger, W. (1995). Self-similar traffic generation: the random midpoint displacement algorithm and its properties. In Proc of ICC’95 Seattle,‘Gateway to Globalization’, 1995 IEEE International Conference on Communications, 1, 466–472. es_ES
dc.description.references Szeliski, R., & Terzopoulos, D. (1989). From splines to fractals. In ACM Siggraph Computer Graphics, 23, 51–60. es_ES
dc.description.references Nagashima, K. (1998). Computer generation of eroded valley and mountain terrains. The Visual Computer, 13(9), 456–464. es_ES
dc.description.references Cordonnier, G., Braun, J., Cani, M.-P., Benes, B., Galin, E., Peytavie, A., & Guérin, E. (2016). Large scale terrain generation from tectonic uplift and fluvial erosion. In Computer Graphics Forum, 35, 165–175. es_ES
dc.description.references Warszawski, K. K., & Nikiel, S. S. (2014). A proposition of erosion algorithm for terrain models with hardness layer. Journal of Theoretical and Applied Computer Science, 8(1), 76–84. es_ES
dc.description.references Zeng, T., Zhu, M., Hu, C., Tian, W., & Long, T. (2015). Experimental results and algorithm analysis of DEM generation using bistatic SAR interferometry with stationary receiver. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 5835–5852. es_ES
dc.description.references Ambrosino, R., Baselice, F., Ferraioli, G., & Schirinzi, G. (2014). InSAR urban DEM generation using Extended Kalman filter. In 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 402–405. es_ES
dc.description.references Zhang, L., Jiang, H., Liao, M., Balz, T., & Wang, T. (2014). Joint use of multi-orbit high-resolution SAR interferometry for DEM generation in mountainous area. In 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 406–409. es_ES
dc.description.references Ferretti, A., Fumagalli, A., Novali, F., Rucci, A., Prati, C., & Rocca, F. (2012). DEM reconstruction with SqueeSAR. In Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), pp. 198–201. es_ES
dc.description.references Schmitt, M., & Stilla, U. (2014). Maximum-likelihood estimation for multi-aspect multi-baseline SAR interferometry of urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 68–77. es_ES
dc.description.references Bergman, N., Ljung, L., & Gustafsson, F. (1999). Terrain navigation using Bayesian statistics. IEEE control systems, 19(3), 33–40. es_ES
dc.description.references Whitlock, M. C. (2005). Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. Journal of Evolutionary Biology, 18(5), 1368–1373. es_ES
dc.description.references Zhou, H., Sun, J., Turk, G., & Rehg, J. M. (2007). Terrain synthesis from digital elevation models. IEEE transactions on visualization and computer graphics, 13(4), 834–848. es_ES
dc.description.references Tasse, F. P. (2011). Distributed texture-based terrain synthesis. Ph.D. thesis, Western Cape: University of Cape town press. es_ES
dc.description.references Bunnell, M. (2005). Dynamic ambient occlusion and indirect lighting. Gpu gems, 2(2), 223–233. es_ES
dc.description.references Shanmugam, P., & Arikan, O. (2007). Hardware accelerated ambient occlusion techniques on GPUs. In Proceedings of the 2007 symposium on Interactive 3D graphics and games, pp. 73–80. es_ES
dc.description.references Gunn, S. R. (1999). On the discrete representation of the Laplacian of Gaussian. Pattern Recognition, 32(8), 1463–1472. es_ES
dc.description.references Lee, E.S., Lee, J.H., & Shin, B.S. (2015). Vertex relocation: a feature-preserved terrain rendering method for pervasive computing environments. Multimedia Tools and Applications, pp. 1–17. es_ES
dc.description.references John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pp. 338–345. es_ES
dc.description.references Dehak, N., Dehak, R., Glass, J. R., Reynolds, D. A., & Kenny, P. (2010). In Odyssey cosine similarity scoring without score normalization techniques, p. 15. es_ES
dc.description.references Bishop, C. M. (2006). Pattern recognition. Machine Learning,p. 128. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem