- -

The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards

Mostrar el registro completo del ítem

Berlanas Vicente, C.; Berbegal Martinez, M.; Elena-Jiménez, G.; Laidani, M.; Cibriain, JF.; Sagües-Sarasa, A.; Gramaje Pérez, D. (2019). The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology. 10:1-16. https://doi.org/10.3389/fmicb.2019.01142

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140892

Ficheros en el ítem

Metadatos del ítem

Título: The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards
Autor: Berlanas Vicente, Carmen Berbegal Martinez, Monica Elena-Jiménez, Georgina Laidani, Meriem Cibriain, José Félix Sagües-Sarasa, Ana Gramaje Pérez, David
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Fecha difusión:
Resumen:
[EN] The microbiota colonizing the rhizosphere and the endorhizosphere contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Several studies suggested that different plants types and even ...[+]
Palabras clave: Bacterial and fungal recruitment , Black-foot disease , Microbial ecology , Microbiome , Rhizosphere , Rootstock selection
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Microbiology. (issn: 1664-302X )
DOI: 10.3389/fmicb.2019.01142
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fmicb.2019.01142
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2015-00015-C02-01/
Descripción: This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.
Agradecimientos:
The research was financially supported by The National Institute for Agricultural and Food Research and Technology (INIA) under the project RTA2015-00015-C02-01. DG was supported by the DOC-INIA program from the INIA, ...[+]
Tipo: Artículo

References

Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093

Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009

AMEND, A. S., SEIFERT, K. A., & BRUNS, T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19(24), 5555-5565. doi:10.1111/j.1365-294x.2010.04898.x [+]
Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093

Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009

AMEND, A. S., SEIFERT, K. A., & BRUNS, T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19(24), 5555-5565. doi:10.1111/j.1365-294x.2010.04898.x

Balestrini, R., Magurno, F., Walker, C., Lumini, E., & Bianciotto, V. (2010). Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environmental Microbiology Reports, 2(4), 594-604. doi:10.1111/j.1758-2229.2010.00160.x

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software, 67(1). doi:10.18637/jss.v067.i01

Billones-Baaijens, R., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2013). Susceptiblity of common rootstock and scion varieties of grapevines to Botryosphaeriaceae species. Australasian Plant Pathology, 43(1), 25-31. doi:10.1007/s13313-013-0228-9

BOUFFAUD, M., KYSELKOVÁ, M., GOUESNARD, B., GRUNDMANN, G., MULLER, D., & MOËNNE‐LOCCOZ, Y. (2011). Is diversification history of maize influencing selection of soil bacteria by roots? Molecular Ecology, 21(1), 195-206. doi:10.1111/j.1365-294x.2011.05359.x

Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325-349. doi:10.2307/1942268

Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675

Buckley, D. H., & Schmidt, T. M. (2001). The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology, 42(1), 11-21. doi:10.1007/s002480000108

Burns, K. N., Kluepfel, D. A., Strauss, S. L., Bokulich, N. A., Cantu, D., & Steenwerth, K. L. (2015). Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by geographic features. Soil Biology and Biochemistry, 91, 232-247. doi:10.1016/j.soilbio.2015.09.002

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., … Wittwer, C. T. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55(4), 611-622. doi:10.1373/clinchem.2008.112797

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303

Castañeda, L. E., & Barbosa, O. (2017). Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ, 5, e3098. doi:10.7717/peerj.3098

Chapelle, E., Mendes, R., Bakker, P. A. H., & Raaijmakers, J. M. (2015). Fungal invasion of the rhizosphere microbiome. The ISME Journal, 10(1), 265-268. doi:10.1038/ismej.2015.82

Corneo, P. E., Pellegrini, A., Cappellin, L., Gessler, C., & Pertot, I. (2014). Moderate Warming in Microcosm Experiment Does Not Affect Microbial Communities in Temperate Vineyard Soils. Microbial Ecology, 67(3), 659-670. doi:10.1007/s00248-013-0357-2

Costa, R., Salles, J. F., Berg, G., & Smalla, K. (2006). Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environmental Microbiology, 8(12), 2136-2149. doi:10.1111/j.1462-2920.2006.01096.x

Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313-327. doi:10.1111/j.1574-6941.2010.00860.x

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., … Andersen, G. L. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072. doi:10.1128/aem.03006-05

Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180-W188. doi:10.1093/nar/gkx295

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. doi:10.1093/bioinformatics/btq461

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996-998. doi:10.1038/nmeth.2604

Fernández-Calviño, D., Martín, A., Arias-Estévez, M., Bååth, E., & Díaz-Raviña, M. (2010). Microbial community structure of vineyard soils with different pH and copper content. Applied Soil Ecology, 46(2), 276-282. doi:10.1016/j.apsoil.2010.08.001

Franzosa, E. A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X. C., & Huttenhower, C. (2015). Sequencing and beyond: integrating molecular «omics» for microbial community profiling. Nature Reviews Microbiology, 13(6), 360-372. doi:10.1038/nrmicro3451

Gallart, M., Adair, K. L., Love, J., Meason, D. F., Clinton, P. W., Xue, J., & Turnbull, M. H. (2017). Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata. Microbial Ecology, 75(2), 419-433. doi:10.1007/s00248-017-1055-2

Gilbert, J. A., van der Lelie, D., & Zarraonaindia, I. (2013). Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences, 111(1), 5-6. doi:10.1073/pnas.1320471110

Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021

Hacquard, S. (2015). Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 209(2), 454-457. doi:10.1111/nph.13760

Holland, T. C., Bowen, P. A., Bogdanoff, C. P., Lowery, T. D., Shaposhnikova, O., Smith, S., & Hart, M. M. (2016). Evaluating the diversity of soil microbial communities in vineyards relative to adjacent native ecosystems. Applied Soil Ecology, 100, 91-103. doi:10.1016/j.apsoil.2015.12.001

Jenkins, S. N., Waite, I. S., Blackburn, A., Husband, R., Rushton, S. P., Manning, D. C., & O’Donnell, A. G. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek, 95(4), 319-334. doi:10.1007/s10482-009-9317-8

Jiang, Y., Li, S., Li, R., Zhang, J., Liu, Y., Lv, L., … Li, W. (2017). Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 109, 145-155. doi:10.1016/j.soilbio.2017.02.010

Le, C. N., Hoang, T. K., Thai, T. H., Tran, T. L., Phan, T. P. N., & Raaijmakers, J. M. (2018). Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biological Control, 121, 256-262. doi:10.1016/j.biocontrol.2018.03.014

Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T., & Vacher, C. (2017). Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere and Phyllosphere. How Plants Communicate with their Biotic Environment, 101-133. doi:10.1016/bs.abr.2016.10.007

Li, X., Rui, J., Mao, Y., Yannarell, A., & Mackie, R. (2014). Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology and Biochemistry, 68, 392-401. doi:10.1016/j.soilbio.2013.10.017

Likar, M., Stres, B., Rusjan, D., Potisek, M., & Regvar, M. (2017). Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 113, 86-95. doi:10.1016/j.apsoil.2017.02.007

Liu, J., Abdelfattah, A., Norelli, J., Burchard, E., Schena, L., Droby, S., & Wisniewski, M. (2018). Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 6(1). doi:10.1186/s40168-018-0403-x

Longa, C. M. O., Nicola, L., Antonielli, L., Mescalchin, E., Zanzotti, R., Turco, E., & Pertot, I. (2017). Soil microbiota respond to green manure in organic vineyards. Journal of Applied Microbiology, 123(6), 1547-1560. doi:10.1111/jam.13606

Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., & Dangl, J. L. (2013). Practical innovations for high-throughput amplicon sequencing. Nature Methods, 10(10), 999-1002. doi:10.1038/nmeth.2634

Manici, L. M., Saccà, M. L., Caputo, F., Zanzotto, A., Gardiman, M., & Fila, G. (2017). Long- term grapevine cultivation and agro-environment affect rhizosphere microbiome rather than plant age. Applied Soil Ecology, 119, 214-225. doi:10.1016/j.apsoil.2017.06.027

Marasco, R., Rolli, E., Fusi, M., Michoud, G., & Daffonchio, D. (2018). Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 6(1). doi:10.1186/s40168-017-0391-2

Marques, J. M., da Silva, T. F., Vollu, R. E., Blank, A. F., Ding, G.-C., Seldin, L., & Smalla, K. (2014). Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology, 88(2), 424-435. doi:10.1111/1574-6941.12313

McMurdie, P. J., & Holmes, S. (2014). Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Computational Biology, 10(4), e1003531. doi:10.1371/journal.pcbi.1003531

Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K.-H. (2008). IntraspecificITSVariability in the KingdomFungias Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evolutionary Bioinformatics, 4, EBO.S653. doi:10.4137/ebo.s653

Okubo, T., Tokida, T., Ikeda, S., Bao, Z., Tago, K., Hayatsu, M., … Minamisawa, K. (2014). Effects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root–Associated Bacteria. Microbes and Environments, 29(2), 184-190. doi:10.1264/jsme2.me14011

Qiao, Q., Wang, F., Zhang, J., Chen, Y., Zhang, C., Liu, G., … Zhang, J. (2017). The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Scientific Reports, 7(1). doi:10.1038/s41598-017-04213-7

Ravin, N. V., Mardanov, A. V., & Skryabin, K. G. (2015). Metagenomics as a tool for the investigation of uncultured microorganisms. Russian Journal of Genetics, 51(5), 431-439. doi:10.1134/s1022795415050063

Redford, A. J., & Fierer, N. (2009). Bacterial Succession on the Leaf Surface: A Novel System for Studying Successional Dynamics. Microbial Ecology, 58(1), 189-198. doi:10.1007/s00248-009-9495-y

Rezgui, A., Ben Ghnaya-Chakroun, A., Vallance, J., Bruez, E., Hajlaoui, M. R., Sadfi-Zouaoui, N., & Rey, P. (2016). Endophytic bacteria with antagonistic traits inhabit the wood tissues of grapevines from Tunisian vineyards. Biological Control, 99, 28-37. doi:10.1016/j.biocontrol.2016.04.005

Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112

Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A., & Nicolaisen, M. (2015). Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytologist, 207(4), 1134-1144. doi:10.1111/nph.13418

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., … Weber, C. F. (2009). Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75(23), 7537-7541. doi:10.1128/aem.01541-09

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., … Crous, P. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. doi:10.1073/pnas.1117018109

Schreiner, R. P., & Mihara, K. L. (2009). The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis viniferaL.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia, 101(5), 599-611. doi:10.3852/08-169

Schreiter, S., Ding, G.-C., Heuer, H., Neumann, Gã¼., Sandmann, M., Grosch, R., … Smalla, K. (2014). Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00144

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. doi:10.1186/gb-2011-12-6-r60

Siahmoshteh, F., Hamidi-Esfahani, Z., Spadaro, D., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2018). Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control, 89, 300-307. doi:10.1016/j.foodcont.2017.11.010

Stefanini, I., & Cavalieri, D. (2018). Metagenomic Approaches to Investigate the Contribution of the Vineyard Environment to the Quality of Wine Fermentation: Potentials and Difficulties. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00991

Tahat, M. M., . K., . S., & Othman, R. (2010). Mycorrhizal Fungi as a Biocontrol Agent. Plant Pathology Journal, 9(4), 198-207. doi:10.3923/ppj.2010.198.207

Tan, S., Yang, C., Mei, X., Shen, S., Raza, W., Shen, Q., & Xu, Y. (2013). The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology, 64, 15-22. doi:10.1016/j.apsoil.2012.10.011

Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2010). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 129(4), 637-651. doi:10.1007/s10658-010-9728-4

Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE, 7(7), e40863. doi:10.1371/journal.pone.0040863

Trouvelot, S., Bonneau, L., Redecker, D., van Tuinen, D., Adrian, M., & Wipf, D. (2015). Arbuscular mycorrhiza symbiosis in viticulture: a review. Agronomy for Sustainable Development, 35(4), 1449-1467. doi:10.1007/s13593-015-0329-7

Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., & Knight, R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience, 2(1). doi:10.1186/2047-217x-2-16

Vega-Avila, A. D., Gumiere, T., Andrade, P. A. M., Lima-Perim, J. E., Durrer, A., Baigori, M., … Andreote, F. D. (2014). Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie van Leeuwenhoek, 107(2), 575-588. doi:10.1007/s10482-014-0353-7

Wagner, M. R., Lundberg, D. S., del Rio, T. G., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 7(1). doi:10.1038/ncomms12151

Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J. B., & Miller, A. J. (2016). Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends in Plant Science, 21(5), 418-437. doi:10.1016/j.tplants.2015.11.008

Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., & Elshahed, M. S. (2009). Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Applied and Environmental Microbiology, 75(16), 5227-5236. doi:10.1128/aem.00592-09

Yuan, J., Chaparro, J. M., Manter, D. K., Zhang, R., Vivanco, J. M., & Shen, Q. (2015). Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 89, 206-209. doi:10.1016/j.soilbio.2015.07.009

Zancarini, A., Mougel, C., Terrat, S., Salon, C., & Munier-Jolain, N. (2012). Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant and Soil, 365(1-2), 183-199. doi:10.1007/s11104-012-1364-7

Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., … Gilbert, J. A. (2015). The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio, 6(2). doi:10.1128/mbio.02527-14

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem