- -

The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berlanas Vicente, Carmen es_ES
dc.contributor.author Berbegal Martinez, Monica es_ES
dc.contributor.author Elena-Jiménez, Georgina es_ES
dc.contributor.author Laidani, Meriem es_ES
dc.contributor.author Cibriain, José Félix es_ES
dc.contributor.author Sagües-Sarasa, Ana es_ES
dc.contributor.author Gramaje Pérez, David es_ES
dc.date.accessioned 2020-04-17T12:49:42Z
dc.date.available 2020-04-17T12:49:42Z
dc.date.issued 2019-05-22 es_ES
dc.identifier.issn 1664-302X es_ES
dc.identifier.uri http://hdl.handle.net/10251/140892
dc.description This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission. es_ES
dc.description.abstract [EN] The microbiota colonizing the rhizosphere and the endorhizosphere contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Several studies suggested that different plants types and even genotypes of the same plant species harbor partially different microbiomes. Here, we characterize the rhizosphere bacterial and fungal microbiota across five grapevine rootstock genotypes cultivated in the same soil at two vineyards and sampling dates over 2 years by 16S rRNA gene and ITS high-throughput amplicon sequencing. In addition, we use quantitative PCR (qPCR) approach to measure the relative abundance and dynamic changes of fungal pathogens associated with black-foot disease. The objectives were to (1) unravel the effects of rootstock genotype on microbial communities in the rhizosphere of grapevine and (2) to compare the relative abundances of sequence reads and DNA amount of black-foot disease pathogens. Host genetic control of the microbiome was evident in the rhizosphere of the mature vineyard. Microbiome composition also shifted as year of sampling, and fungal diversity varied with sampling moments. Linear discriminant analysis identified specific bacterial (i.e., Bacillus) and fungal (i.e., Glomus) taxa associated with grapevine rootstocks. Host genotype did not predict any summary metrics of rhizosphere alpha- and beta-diversity in the young vineyard. Regarding black-foot associated pathogens, a significant correlation between sequencing reads and qPCR was observed. In conclusion, grapevine rootstock genotypes in the mature vineyard were associated with different rhizosphere microbiomes. The latter could also have been affected by age of the vineyard, soil properties or field management practices. A more comprehensive study is needed to decipher the cause of the rootstock microbiome selection and the mechanisms by which grapevines are able to shape their associated microbial community. Understanding the vast diversity of bacteria and fungi in the rhizosphere and the interactions between microbiota and grapevine will facilitate the development of future strategies for grapevine protection. es_ES
dc.description.sponsorship The research was financially supported by The National Institute for Agricultural and Food Research and Technology (INIA) under the project RTA2015-00015-C02-01. DG was supported by the DOC-INIA program from the INIA, co-funded by the European Social Fund. CB was supported by the FPI-INIA program from the INIA. GE was supported by the Spanish post-doctoral grant Juan de la Cierva-Formación. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Microbiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bacterial and fungal recruitment es_ES
dc.subject Black-foot disease es_ES
dc.subject Microbial ecology es_ES
dc.subject Microbiome es_ES
dc.subject Rhizosphere es_ES
dc.subject Rootstock selection es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fmicb.2019.01142 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00015-C02-01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Berlanas Vicente, C.; Berbegal Martinez, M.; Elena-Jiménez, G.; Laidani, M.; Cibriain, JF.; Sagües-Sarasa, A.; Gramaje Pérez, D. (2019). The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology. 10:1-16. https://doi.org/10.3389/fmicb.2019.01142 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fmicb.2019.01142 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.relation.pasarela S\392061 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Instituto Nacional de Investigaciones Agrarias es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093 es_ES
dc.description.references Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009 es_ES
dc.description.references AMEND, A. S., SEIFERT, K. A., & BRUNS, T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19(24), 5555-5565. doi:10.1111/j.1365-294x.2010.04898.x es_ES
dc.description.references Balestrini, R., Magurno, F., Walker, C., Lumini, E., & Bianciotto, V. (2010). Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environmental Microbiology Reports, 2(4), 594-604. doi:10.1111/j.1758-2229.2010.00160.x es_ES
dc.description.references Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software, 67(1). doi:10.18637/jss.v067.i01 es_ES
dc.description.references Billones-Baaijens, R., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2013). Susceptiblity of common rootstock and scion varieties of grapevines to Botryosphaeriaceae species. Australasian Plant Pathology, 43(1), 25-31. doi:10.1007/s13313-013-0228-9 es_ES
dc.description.references BOUFFAUD, M., KYSELKOVÁ, M., GOUESNARD, B., GRUNDMANN, G., MULLER, D., & MOËNNE‐LOCCOZ, Y. (2011). Is diversification history of maize influencing selection of soil bacteria by roots? Molecular Ecology, 21(1), 195-206. doi:10.1111/j.1365-294x.2011.05359.x es_ES
dc.description.references Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325-349. doi:10.2307/1942268 es_ES
dc.description.references Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675 es_ES
dc.description.references Buckley, D. H., & Schmidt, T. M. (2001). The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology, 42(1), 11-21. doi:10.1007/s002480000108 es_ES
dc.description.references Burns, K. N., Kluepfel, D. A., Strauss, S. L., Bokulich, N. A., Cantu, D., & Steenwerth, K. L. (2015). Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by geographic features. Soil Biology and Biochemistry, 91, 232-247. doi:10.1016/j.soilbio.2015.09.002 es_ES
dc.description.references Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., … Wittwer, C. T. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55(4), 611-622. doi:10.1373/clinchem.2008.112797 es_ES
dc.description.references Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303 es_ES
dc.description.references Castañeda, L. E., & Barbosa, O. (2017). Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ, 5, e3098. doi:10.7717/peerj.3098 es_ES
dc.description.references Chapelle, E., Mendes, R., Bakker, P. A. H., & Raaijmakers, J. M. (2015). Fungal invasion of the rhizosphere microbiome. The ISME Journal, 10(1), 265-268. doi:10.1038/ismej.2015.82 es_ES
dc.description.references Corneo, P. E., Pellegrini, A., Cappellin, L., Gessler, C., & Pertot, I. (2014). Moderate Warming in Microcosm Experiment Does Not Affect Microbial Communities in Temperate Vineyard Soils. Microbial Ecology, 67(3), 659-670. doi:10.1007/s00248-013-0357-2 es_ES
dc.description.references Costa, R., Salles, J. F., Berg, G., & Smalla, K. (2006). Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environmental Microbiology, 8(12), 2136-2149. doi:10.1111/j.1462-2920.2006.01096.x es_ES
dc.description.references Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313-327. doi:10.1111/j.1574-6941.2010.00860.x es_ES
dc.description.references DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., … Andersen, G. L. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072. doi:10.1128/aem.03006-05 es_ES
dc.description.references Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180-W188. doi:10.1093/nar/gkx295 es_ES
dc.description.references Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. doi:10.1093/bioinformatics/btq461 es_ES
dc.description.references Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996-998. doi:10.1038/nmeth.2604 es_ES
dc.description.references Fernández-Calviño, D., Martín, A., Arias-Estévez, M., Bååth, E., & Díaz-Raviña, M. (2010). Microbial community structure of vineyard soils with different pH and copper content. Applied Soil Ecology, 46(2), 276-282. doi:10.1016/j.apsoil.2010.08.001 es_ES
dc.description.references Franzosa, E. A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X. C., & Huttenhower, C. (2015). Sequencing and beyond: integrating molecular «omics» for microbial community profiling. Nature Reviews Microbiology, 13(6), 360-372. doi:10.1038/nrmicro3451 es_ES
dc.description.references Gallart, M., Adair, K. L., Love, J., Meason, D. F., Clinton, P. W., Xue, J., & Turnbull, M. H. (2017). Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata. Microbial Ecology, 75(2), 419-433. doi:10.1007/s00248-017-1055-2 es_ES
dc.description.references Gilbert, J. A., van der Lelie, D., & Zarraonaindia, I. (2013). Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences, 111(1), 5-6. doi:10.1073/pnas.1320471110 es_ES
dc.description.references Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021 es_ES
dc.description.references Hacquard, S. (2015). Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 209(2), 454-457. doi:10.1111/nph.13760 es_ES
dc.description.references Holland, T. C., Bowen, P. A., Bogdanoff, C. P., Lowery, T. D., Shaposhnikova, O., Smith, S., & Hart, M. M. (2016). Evaluating the diversity of soil microbial communities in vineyards relative to adjacent native ecosystems. Applied Soil Ecology, 100, 91-103. doi:10.1016/j.apsoil.2015.12.001 es_ES
dc.description.references Jenkins, S. N., Waite, I. S., Blackburn, A., Husband, R., Rushton, S. P., Manning, D. C., & O’Donnell, A. G. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek, 95(4), 319-334. doi:10.1007/s10482-009-9317-8 es_ES
dc.description.references Jiang, Y., Li, S., Li, R., Zhang, J., Liu, Y., Lv, L., … Li, W. (2017). Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 109, 145-155. doi:10.1016/j.soilbio.2017.02.010 es_ES
dc.description.references Le, C. N., Hoang, T. K., Thai, T. H., Tran, T. L., Phan, T. P. N., & Raaijmakers, J. M. (2018). Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biological Control, 121, 256-262. doi:10.1016/j.biocontrol.2018.03.014 es_ES
dc.description.references Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T., & Vacher, C. (2017). Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere and Phyllosphere. How Plants Communicate with their Biotic Environment, 101-133. doi:10.1016/bs.abr.2016.10.007 es_ES
dc.description.references Li, X., Rui, J., Mao, Y., Yannarell, A., & Mackie, R. (2014). Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology and Biochemistry, 68, 392-401. doi:10.1016/j.soilbio.2013.10.017 es_ES
dc.description.references Likar, M., Stres, B., Rusjan, D., Potisek, M., & Regvar, M. (2017). Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 113, 86-95. doi:10.1016/j.apsoil.2017.02.007 es_ES
dc.description.references Liu, J., Abdelfattah, A., Norelli, J., Burchard, E., Schena, L., Droby, S., & Wisniewski, M. (2018). Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 6(1). doi:10.1186/s40168-018-0403-x es_ES
dc.description.references Longa, C. M. O., Nicola, L., Antonielli, L., Mescalchin, E., Zanzotti, R., Turco, E., & Pertot, I. (2017). Soil microbiota respond to green manure in organic vineyards. Journal of Applied Microbiology, 123(6), 1547-1560. doi:10.1111/jam.13606 es_ES
dc.description.references Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., & Dangl, J. L. (2013). Practical innovations for high-throughput amplicon sequencing. Nature Methods, 10(10), 999-1002. doi:10.1038/nmeth.2634 es_ES
dc.description.references Manici, L. M., Saccà, M. L., Caputo, F., Zanzotto, A., Gardiman, M., & Fila, G. (2017). Long- term grapevine cultivation and agro-environment affect rhizosphere microbiome rather than plant age. Applied Soil Ecology, 119, 214-225. doi:10.1016/j.apsoil.2017.06.027 es_ES
dc.description.references Marasco, R., Rolli, E., Fusi, M., Michoud, G., & Daffonchio, D. (2018). Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 6(1). doi:10.1186/s40168-017-0391-2 es_ES
dc.description.references Marques, J. M., da Silva, T. F., Vollu, R. E., Blank, A. F., Ding, G.-C., Seldin, L., & Smalla, K. (2014). Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology, 88(2), 424-435. doi:10.1111/1574-6941.12313 es_ES
dc.description.references McMurdie, P. J., & Holmes, S. (2014). Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Computational Biology, 10(4), e1003531. doi:10.1371/journal.pcbi.1003531 es_ES
dc.description.references Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K.-H. (2008). IntraspecificITSVariability in the KingdomFungias Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evolutionary Bioinformatics, 4, EBO.S653. doi:10.4137/ebo.s653 es_ES
dc.description.references Okubo, T., Tokida, T., Ikeda, S., Bao, Z., Tago, K., Hayatsu, M., … Minamisawa, K. (2014). Effects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root–Associated Bacteria. Microbes and Environments, 29(2), 184-190. doi:10.1264/jsme2.me14011 es_ES
dc.description.references Qiao, Q., Wang, F., Zhang, J., Chen, Y., Zhang, C., Liu, G., … Zhang, J. (2017). The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Scientific Reports, 7(1). doi:10.1038/s41598-017-04213-7 es_ES
dc.description.references Ravin, N. V., Mardanov, A. V., & Skryabin, K. G. (2015). Metagenomics as a tool for the investigation of uncultured microorganisms. Russian Journal of Genetics, 51(5), 431-439. doi:10.1134/s1022795415050063 es_ES
dc.description.references Redford, A. J., & Fierer, N. (2009). Bacterial Succession on the Leaf Surface: A Novel System for Studying Successional Dynamics. Microbial Ecology, 58(1), 189-198. doi:10.1007/s00248-009-9495-y es_ES
dc.description.references Rezgui, A., Ben Ghnaya-Chakroun, A., Vallance, J., Bruez, E., Hajlaoui, M. R., Sadfi-Zouaoui, N., & Rey, P. (2016). Endophytic bacteria with antagonistic traits inhabit the wood tissues of grapevines from Tunisian vineyards. Biological Control, 99, 28-37. doi:10.1016/j.biocontrol.2016.04.005 es_ES
dc.description.references Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112 es_ES
dc.description.references Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A., & Nicolaisen, M. (2015). Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytologist, 207(4), 1134-1144. doi:10.1111/nph.13418 es_ES
dc.description.references Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., … Weber, C. F. (2009). Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75(23), 7537-7541. doi:10.1128/aem.01541-09 es_ES
dc.description.references Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., … Crous, P. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. doi:10.1073/pnas.1117018109 es_ES
dc.description.references Schreiner, R. P., & Mihara, K. L. (2009). The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis viniferaL.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia, 101(5), 599-611. doi:10.3852/08-169 es_ES
dc.description.references Schreiter, S., Ding, G.-C., Heuer, H., Neumann, Gã¼., Sandmann, M., Grosch, R., … Smalla, K. (2014). Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00144 es_ES
dc.description.references Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. doi:10.1186/gb-2011-12-6-r60 es_ES
dc.description.references Siahmoshteh, F., Hamidi-Esfahani, Z., Spadaro, D., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2018). Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control, 89, 300-307. doi:10.1016/j.foodcont.2017.11.010 es_ES
dc.description.references Stefanini, I., & Cavalieri, D. (2018). Metagenomic Approaches to Investigate the Contribution of the Vineyard Environment to the Quality of Wine Fermentation: Potentials and Difficulties. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00991 es_ES
dc.description.references Tahat, M. M., . K., . S., & Othman, R. (2010). Mycorrhizal Fungi as a Biocontrol Agent. Plant Pathology Journal, 9(4), 198-207. doi:10.3923/ppj.2010.198.207 es_ES
dc.description.references Tan, S., Yang, C., Mei, X., Shen, S., Raza, W., Shen, Q., & Xu, Y. (2013). The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology, 64, 15-22. doi:10.1016/j.apsoil.2012.10.011 es_ES
dc.description.references Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2010). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 129(4), 637-651. doi:10.1007/s10658-010-9728-4 es_ES
dc.description.references Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE, 7(7), e40863. doi:10.1371/journal.pone.0040863 es_ES
dc.description.references Trouvelot, S., Bonneau, L., Redecker, D., van Tuinen, D., Adrian, M., & Wipf, D. (2015). Arbuscular mycorrhiza symbiosis in viticulture: a review. Agronomy for Sustainable Development, 35(4), 1449-1467. doi:10.1007/s13593-015-0329-7 es_ES
dc.description.references Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., & Knight, R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience, 2(1). doi:10.1186/2047-217x-2-16 es_ES
dc.description.references Vega-Avila, A. D., Gumiere, T., Andrade, P. A. M., Lima-Perim, J. E., Durrer, A., Baigori, M., … Andreote, F. D. (2014). Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie van Leeuwenhoek, 107(2), 575-588. doi:10.1007/s10482-014-0353-7 es_ES
dc.description.references Wagner, M. R., Lundberg, D. S., del Rio, T. G., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 7(1). doi:10.1038/ncomms12151 es_ES
dc.description.references Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J. B., & Miller, A. J. (2016). Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends in Plant Science, 21(5), 418-437. doi:10.1016/j.tplants.2015.11.008 es_ES
dc.description.references Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., & Elshahed, M. S. (2009). Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Applied and Environmental Microbiology, 75(16), 5227-5236. doi:10.1128/aem.00592-09 es_ES
dc.description.references Yuan, J., Chaparro, J. M., Manter, D. K., Zhang, R., Vivanco, J. M., & Shen, Q. (2015). Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 89, 206-209. doi:10.1016/j.soilbio.2015.07.009 es_ES
dc.description.references Zancarini, A., Mougel, C., Terrat, S., Salon, C., & Munier-Jolain, N. (2012). Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant and Soil, 365(1-2), 183-199. doi:10.1007/s11104-012-1364-7 es_ES
dc.description.references Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., … Gilbert, J. A. (2015). The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio, 6(2). doi:10.1128/mbio.02527-14 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem