Mostrar el registro sencillo del ítem
dc.contributor.author | Berlanas Vicente, Carmen | es_ES |
dc.contributor.author | Berbegal Martinez, Monica | es_ES |
dc.contributor.author | Elena-Jiménez, Georgina | es_ES |
dc.contributor.author | Laidani, Meriem | es_ES |
dc.contributor.author | Cibriain, José Félix | es_ES |
dc.contributor.author | Sagües-Sarasa, Ana | es_ES |
dc.contributor.author | Gramaje Pérez, David | es_ES |
dc.date.accessioned | 2020-04-17T12:49:42Z | |
dc.date.available | 2020-04-17T12:49:42Z | |
dc.date.issued | 2019-05-22 | es_ES |
dc.identifier.issn | 1664-302X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/140892 | |
dc.description | This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission. | es_ES |
dc.description.abstract | [EN] The microbiota colonizing the rhizosphere and the endorhizosphere contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Several studies suggested that different plants types and even genotypes of the same plant species harbor partially different microbiomes. Here, we characterize the rhizosphere bacterial and fungal microbiota across five grapevine rootstock genotypes cultivated in the same soil at two vineyards and sampling dates over 2 years by 16S rRNA gene and ITS high-throughput amplicon sequencing. In addition, we use quantitative PCR (qPCR) approach to measure the relative abundance and dynamic changes of fungal pathogens associated with black-foot disease. The objectives were to (1) unravel the effects of rootstock genotype on microbial communities in the rhizosphere of grapevine and (2) to compare the relative abundances of sequence reads and DNA amount of black-foot disease pathogens. Host genetic control of the microbiome was evident in the rhizosphere of the mature vineyard. Microbiome composition also shifted as year of sampling, and fungal diversity varied with sampling moments. Linear discriminant analysis identified specific bacterial (i.e., Bacillus) and fungal (i.e., Glomus) taxa associated with grapevine rootstocks. Host genotype did not predict any summary metrics of rhizosphere alpha- and beta-diversity in the young vineyard. Regarding black-foot associated pathogens, a significant correlation between sequencing reads and qPCR was observed. In conclusion, grapevine rootstock genotypes in the mature vineyard were associated with different rhizosphere microbiomes. The latter could also have been affected by age of the vineyard, soil properties or field management practices. A more comprehensive study is needed to decipher the cause of the rootstock microbiome selection and the mechanisms by which grapevines are able to shape their associated microbial community. Understanding the vast diversity of bacteria and fungi in the rhizosphere and the interactions between microbiota and grapevine will facilitate the development of future strategies for grapevine protection. | es_ES |
dc.description.sponsorship | The research was financially supported by The National Institute for Agricultural and Food Research and Technology (INIA) under the project RTA2015-00015-C02-01. DG was supported by the DOC-INIA program from the INIA, co-funded by the European Social Fund. CB was supported by the FPI-INIA program from the INIA. GE was supported by the Spanish post-doctoral grant Juan de la Cierva-Formación. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Microbiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Bacterial and fungal recruitment | es_ES |
dc.subject | Black-foot disease | es_ES |
dc.subject | Microbial ecology | es_ES |
dc.subject | Microbiome | es_ES |
dc.subject | Rhizosphere | es_ES |
dc.subject | Rootstock selection | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fmicb.2019.01142 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2015-00015-C02-01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Berlanas Vicente, C.; Berbegal Martinez, M.; Elena-Jiménez, G.; Laidani, M.; Cibriain, JF.; Sagües-Sarasa, A.; Gramaje Pérez, D. (2019). The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Frontiers in Microbiology. 10:1-16. https://doi.org/10.3389/fmicb.2019.01142 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fmicb.2019.01142 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.relation.pasarela | S\392061 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Instituto Nacional de Investigaciones Agrarias | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.description.references | Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093 | es_ES |
dc.description.references | Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009 | es_ES |
dc.description.references | AMEND, A. S., SEIFERT, K. A., & BRUNS, T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology, 19(24), 5555-5565. doi:10.1111/j.1365-294x.2010.04898.x | es_ES |
dc.description.references | Balestrini, R., Magurno, F., Walker, C., Lumini, E., & Bianciotto, V. (2010). Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environmental Microbiology Reports, 2(4), 594-604. doi:10.1111/j.1758-2229.2010.00160.x | es_ES |
dc.description.references | Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. Journal of Statistical Software, 67(1). doi:10.18637/jss.v067.i01 | es_ES |
dc.description.references | Billones-Baaijens, R., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2013). Susceptiblity of common rootstock and scion varieties of grapevines to Botryosphaeriaceae species. Australasian Plant Pathology, 43(1), 25-31. doi:10.1007/s13313-013-0228-9 | es_ES |
dc.description.references | BOUFFAUD, M., KYSELKOVÁ, M., GOUESNARD, B., GRUNDMANN, G., MULLER, D., & MOËNNE‐LOCCOZ, Y. (2011). Is diversification history of maize influencing selection of soil bacteria by roots? Molecular Ecology, 21(1), 195-206. doi:10.1111/j.1365-294x.2011.05359.x | es_ES |
dc.description.references | Bray, J. R., & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325-349. doi:10.2307/1942268 | es_ES |
dc.description.references | Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675 | es_ES |
dc.description.references | Buckley, D. H., & Schmidt, T. M. (2001). The structure of microbial communities in soil and the lasting impact of cultivation. Microbial Ecology, 42(1), 11-21. doi:10.1007/s002480000108 | es_ES |
dc.description.references | Burns, K. N., Kluepfel, D. A., Strauss, S. L., Bokulich, N. A., Cantu, D., & Steenwerth, K. L. (2015). Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by geographic features. Soil Biology and Biochemistry, 91, 232-247. doi:10.1016/j.soilbio.2015.09.002 | es_ES |
dc.description.references | Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., … Wittwer, C. T. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55(4), 611-622. doi:10.1373/clinchem.2008.112797 | es_ES |
dc.description.references | Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303 | es_ES |
dc.description.references | Castañeda, L. E., & Barbosa, O. (2017). Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ, 5, e3098. doi:10.7717/peerj.3098 | es_ES |
dc.description.references | Chapelle, E., Mendes, R., Bakker, P. A. H., & Raaijmakers, J. M. (2015). Fungal invasion of the rhizosphere microbiome. The ISME Journal, 10(1), 265-268. doi:10.1038/ismej.2015.82 | es_ES |
dc.description.references | Corneo, P. E., Pellegrini, A., Cappellin, L., Gessler, C., & Pertot, I. (2014). Moderate Warming in Microcosm Experiment Does Not Affect Microbial Communities in Temperate Vineyard Soils. Microbial Ecology, 67(3), 659-670. doi:10.1007/s00248-013-0357-2 | es_ES |
dc.description.references | Costa, R., Salles, J. F., Berg, G., & Smalla, K. (2006). Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants. Environmental Microbiology, 8(12), 2136-2149. doi:10.1111/j.1462-2920.2006.01096.x | es_ES |
dc.description.references | Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72(3), 313-327. doi:10.1111/j.1574-6941.2010.00860.x | es_ES |
dc.description.references | DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., … Andersen, G. L. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072. doi:10.1128/aem.03006-05 | es_ES |
dc.description.references | Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., & Xia, J. (2017). MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Research, 45(W1), W180-W188. doi:10.1093/nar/gkx295 | es_ES |
dc.description.references | Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460-2461. doi:10.1093/bioinformatics/btq461 | es_ES |
dc.description.references | Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996-998. doi:10.1038/nmeth.2604 | es_ES |
dc.description.references | Fernández-Calviño, D., Martín, A., Arias-Estévez, M., Bååth, E., & Díaz-Raviña, M. (2010). Microbial community structure of vineyard soils with different pH and copper content. Applied Soil Ecology, 46(2), 276-282. doi:10.1016/j.apsoil.2010.08.001 | es_ES |
dc.description.references | Franzosa, E. A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X. C., & Huttenhower, C. (2015). Sequencing and beyond: integrating molecular «omics» for microbial community profiling. Nature Reviews Microbiology, 13(6), 360-372. doi:10.1038/nrmicro3451 | es_ES |
dc.description.references | Gallart, M., Adair, K. L., Love, J., Meason, D. F., Clinton, P. W., Xue, J., & Turnbull, M. H. (2017). Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata. Microbial Ecology, 75(2), 419-433. doi:10.1007/s00248-017-1055-2 | es_ES |
dc.description.references | Gilbert, J. A., van der Lelie, D., & Zarraonaindia, I. (2013). Microbial terroir for wine grapes. Proceedings of the National Academy of Sciences, 111(1), 5-6. doi:10.1073/pnas.1320471110 | es_ES |
dc.description.references | Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021 | es_ES |
dc.description.references | Hacquard, S. (2015). Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytologist, 209(2), 454-457. doi:10.1111/nph.13760 | es_ES |
dc.description.references | Holland, T. C., Bowen, P. A., Bogdanoff, C. P., Lowery, T. D., Shaposhnikova, O., Smith, S., & Hart, M. M. (2016). Evaluating the diversity of soil microbial communities in vineyards relative to adjacent native ecosystems. Applied Soil Ecology, 100, 91-103. doi:10.1016/j.apsoil.2015.12.001 | es_ES |
dc.description.references | Jenkins, S. N., Waite, I. S., Blackburn, A., Husband, R., Rushton, S. P., Manning, D. C., & O’Donnell, A. G. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek, 95(4), 319-334. doi:10.1007/s10482-009-9317-8 | es_ES |
dc.description.references | Jiang, Y., Li, S., Li, R., Zhang, J., Liu, Y., Lv, L., … Li, W. (2017). Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 109, 145-155. doi:10.1016/j.soilbio.2017.02.010 | es_ES |
dc.description.references | Le, C. N., Hoang, T. K., Thai, T. H., Tran, T. L., Phan, T. P. N., & Raaijmakers, J. M. (2018). Isolation, characterization and comparative analysis of plant-associated bacteria for suppression of soil-borne diseases of field-grown groundnut in Vietnam. Biological Control, 121, 256-262. doi:10.1016/j.biocontrol.2018.03.014 | es_ES |
dc.description.references | Lemanceau, P., Barret, M., Mazurier, S., Mondy, S., Pivato, B., Fort, T., & Vacher, C. (2017). Plant Communication With Associated Microbiota in the Spermosphere, Rhizosphere and Phyllosphere. How Plants Communicate with their Biotic Environment, 101-133. doi:10.1016/bs.abr.2016.10.007 | es_ES |
dc.description.references | Li, X., Rui, J., Mao, Y., Yannarell, A., & Mackie, R. (2014). Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology and Biochemistry, 68, 392-401. doi:10.1016/j.soilbio.2013.10.017 | es_ES |
dc.description.references | Likar, M., Stres, B., Rusjan, D., Potisek, M., & Regvar, M. (2017). Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Applied Soil Ecology, 113, 86-95. doi:10.1016/j.apsoil.2017.02.007 | es_ES |
dc.description.references | Liu, J., Abdelfattah, A., Norelli, J., Burchard, E., Schena, L., Droby, S., & Wisniewski, M. (2018). Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome, 6(1). doi:10.1186/s40168-018-0403-x | es_ES |
dc.description.references | Longa, C. M. O., Nicola, L., Antonielli, L., Mescalchin, E., Zanzotti, R., Turco, E., & Pertot, I. (2017). Soil microbiota respond to green manure in organic vineyards. Journal of Applied Microbiology, 123(6), 1547-1560. doi:10.1111/jam.13606 | es_ES |
dc.description.references | Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., & Dangl, J. L. (2013). Practical innovations for high-throughput amplicon sequencing. Nature Methods, 10(10), 999-1002. doi:10.1038/nmeth.2634 | es_ES |
dc.description.references | Manici, L. M., Saccà, M. L., Caputo, F., Zanzotto, A., Gardiman, M., & Fila, G. (2017). Long- term grapevine cultivation and agro-environment affect rhizosphere microbiome rather than plant age. Applied Soil Ecology, 119, 214-225. doi:10.1016/j.apsoil.2017.06.027 | es_ES |
dc.description.references | Marasco, R., Rolli, E., Fusi, M., Michoud, G., & Daffonchio, D. (2018). Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 6(1). doi:10.1186/s40168-017-0391-2 | es_ES |
dc.description.references | Marques, J. M., da Silva, T. F., Vollu, R. E., Blank, A. F., Ding, G.-C., Seldin, L., & Smalla, K. (2014). Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiology Ecology, 88(2), 424-435. doi:10.1111/1574-6941.12313 | es_ES |
dc.description.references | McMurdie, P. J., & Holmes, S. (2014). Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Computational Biology, 10(4), e1003531. doi:10.1371/journal.pcbi.1003531 | es_ES |
dc.description.references | Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., & Larsson, K.-H. (2008). IntraspecificITSVariability in the KingdomFungias Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification. Evolutionary Bioinformatics, 4, EBO.S653. doi:10.4137/ebo.s653 | es_ES |
dc.description.references | Okubo, T., Tokida, T., Ikeda, S., Bao, Z., Tago, K., Hayatsu, M., … Minamisawa, K. (2014). Effects of Elevated Carbon Dioxide, Elevated Temperature, and Rice Growth Stage on the Community Structure of Rice Root–Associated Bacteria. Microbes and Environments, 29(2), 184-190. doi:10.1264/jsme2.me14011 | es_ES |
dc.description.references | Qiao, Q., Wang, F., Zhang, J., Chen, Y., Zhang, C., Liu, G., … Zhang, J. (2017). The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Scientific Reports, 7(1). doi:10.1038/s41598-017-04213-7 | es_ES |
dc.description.references | Ravin, N. V., Mardanov, A. V., & Skryabin, K. G. (2015). Metagenomics as a tool for the investigation of uncultured microorganisms. Russian Journal of Genetics, 51(5), 431-439. doi:10.1134/s1022795415050063 | es_ES |
dc.description.references | Redford, A. J., & Fierer, N. (2009). Bacterial Succession on the Leaf Surface: A Novel System for Studying Successional Dynamics. Microbial Ecology, 58(1), 189-198. doi:10.1007/s00248-009-9495-y | es_ES |
dc.description.references | Rezgui, A., Ben Ghnaya-Chakroun, A., Vallance, J., Bruez, E., Hajlaoui, M. R., Sadfi-Zouaoui, N., & Rey, P. (2016). Endophytic bacteria with antagonistic traits inhabit the wood tissues of grapevines from Tunisian vineyards. Biological Control, 99, 28-37. doi:10.1016/j.biocontrol.2016.04.005 | es_ES |
dc.description.references | Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., & Baldwin, I. T. (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Sciences, 112(36), E5013-E5020. doi:10.1073/pnas.1505765112 | es_ES |
dc.description.references | Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A., & Nicolaisen, M. (2015). Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytologist, 207(4), 1134-1144. doi:10.1111/nph.13418 | es_ES |
dc.description.references | Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., … Weber, C. F. (2009). Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75(23), 7537-7541. doi:10.1128/aem.01541-09 | es_ES |
dc.description.references | Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., … Crous, P. W. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. doi:10.1073/pnas.1117018109 | es_ES |
dc.description.references | Schreiner, R. P., & Mihara, K. L. (2009). The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis viniferaL.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia, 101(5), 599-611. doi:10.3852/08-169 | es_ES |
dc.description.references | Schreiter, S., Ding, G.-C., Heuer, H., Neumann, Gã¼., Sandmann, M., Grosch, R., … Smalla, K. (2014). Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00144 | es_ES |
dc.description.references | Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. doi:10.1186/gb-2011-12-6-r60 | es_ES |
dc.description.references | Siahmoshteh, F., Hamidi-Esfahani, Z., Spadaro, D., Shams-Ghahfarokhi, M., & Razzaghi-Abyaneh, M. (2018). Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control, 89, 300-307. doi:10.1016/j.foodcont.2017.11.010 | es_ES |
dc.description.references | Stefanini, I., & Cavalieri, D. (2018). Metagenomic Approaches to Investigate the Contribution of the Vineyard Environment to the Quality of Wine Fermentation: Potentials and Difficulties. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.00991 | es_ES |
dc.description.references | Tahat, M. M., . K., . S., & Othman, R. (2010). Mycorrhizal Fungi as a Biocontrol Agent. Plant Pathology Journal, 9(4), 198-207. doi:10.3923/ppj.2010.198.207 | es_ES |
dc.description.references | Tan, S., Yang, C., Mei, X., Shen, S., Raza, W., Shen, Q., & Xu, Y. (2013). The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5. Applied Soil Ecology, 64, 15-22. doi:10.1016/j.apsoil.2012.10.011 | es_ES |
dc.description.references | Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., & McLeod, A. (2010). Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology, 129(4), 637-651. doi:10.1007/s10658-010-9728-4 | es_ES |
dc.description.references | Toju, H., Tanabe, A. S., Yamamoto, S., & Sato, H. (2012). High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE, 7(7), e40863. doi:10.1371/journal.pone.0040863 | es_ES |
dc.description.references | Trouvelot, S., Bonneau, L., Redecker, D., van Tuinen, D., Adrian, M., & Wipf, D. (2015). Arbuscular mycorrhiza symbiosis in viticulture: a review. Agronomy for Sustainable Development, 35(4), 1449-1467. doi:10.1007/s13593-015-0329-7 | es_ES |
dc.description.references | Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., & Knight, R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience, 2(1). doi:10.1186/2047-217x-2-16 | es_ES |
dc.description.references | Vega-Avila, A. D., Gumiere, T., Andrade, P. A. M., Lima-Perim, J. E., Durrer, A., Baigori, M., … Andreote, F. D. (2014). Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Antonie van Leeuwenhoek, 107(2), 575-588. doi:10.1007/s10482-014-0353-7 | es_ES |
dc.description.references | Wagner, M. R., Lundberg, D. S., del Rio, T. G., Tringe, S. G., Dangl, J. L., & Mitchell-Olds, T. (2016). Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 7(1). doi:10.1038/ncomms12151 | es_ES |
dc.description.references | Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J. B., & Miller, A. J. (2016). Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends in Plant Science, 21(5), 418-437. doi:10.1016/j.tplants.2015.11.008 | es_ES |
dc.description.references | Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., & Elshahed, M. S. (2009). Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Applied and Environmental Microbiology, 75(16), 5227-5236. doi:10.1128/aem.00592-09 | es_ES |
dc.description.references | Yuan, J., Chaparro, J. M., Manter, D. K., Zhang, R., Vivanco, J. M., & Shen, Q. (2015). Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 89, 206-209. doi:10.1016/j.soilbio.2015.07.009 | es_ES |
dc.description.references | Zancarini, A., Mougel, C., Terrat, S., Salon, C., & Munier-Jolain, N. (2012). Combining ecophysiological and microbial ecological approaches to study the relationship between Medicago truncatula genotypes and their associated rhizosphere bacterial communities. Plant and Soil, 365(1-2), 183-199. doi:10.1007/s11104-012-1364-7 | es_ES |
dc.description.references | Zarraonaindia, I., Owens, S. M., Weisenhorn, P., West, K., Hampton-Marcell, J., Lax, S., … Gilbert, J. A. (2015). The Soil Microbiome Influences Grapevine-Associated Microbiota. mBio, 6(2). doi:10.1128/mbio.02527-14 | es_ES |