- -

Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andrio Balado, Andreu es_ES
dc.contributor.author Hernández, S. I. es_ES
dc.contributor.author García-Alcantara, C. es_ES
dc.contributor.author Del Castillo, L. F. es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Santamaría-Holek, Ivàn es_ES
dc.date.accessioned 2020-04-17T12:49:44Z
dc.date.available 2020-04-17T12:49:44Z
dc.date.issued 2019-06-28 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140893
dc.description.abstract [EN] We present an experimental study and a theoretical interpretation of the temperature dependence of the transport properties of doped CsH2PO4 salts in both protonic and superprotonic phases. Cesium phosphate based solid electrolytes are technologically relevant because their operational temperature range is about 100 to 300 degrees C in which a superprotonic transition may manifest depending on its mixed composition. The experimental study was carried out using impedance spectroscopy at the temperature range of 150-230 degrees C, and the protonic and superprotonic transport properties and proton concentrations were calculated and analyzed by using the electrode polarization, and the Debye and Cole-Cole models for the dielectric constant. We have shown that the transport properties predicted by the Cole-Cole model are consistent with the conductivity measurements whereas the Debye model shows some inconsistencies. We attribute this to the fact that the Cole-Cole model incorporates the effects of interactions among charge carriers better than the more commonly used Debye model. In this way, our work shows a more consistent approach to determine the transport properties of solid electrolytes and, therefore, provides a more reliable tool to analyze the transport properties of heterogeneous solid electrolytes that can be used in electrochemical devices, including fuel cells and supercapacitors. es_ES
dc.description.sponsorship This research was supported by Ministerio de Economia y Competitividad (MINECO) by means of the project reference: ENE/2015-69203-R. ISH, CGA and SIH are grateful to projects UNAM-DGAPA-PAPIIT-IN116617, IN117419 and IA104319. SIH is grateful to project LANCAD-UNAM-DGTIC-276. LFC is grateful to projects DGAPA-PAPIIT IG-100618 and DGAPA-PAPIIT IN114818. We gratefully acknowledge Profs Dr Francesc Teixidor and Dr Clara Vinas for technical assistance in SEM image and EDX analysis and preparation of samples for such studies. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cp07472k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN116617/ES/Termodinámica de no equilibrio de sistemas pequeños autoconfinados (continuación)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN117419/MX/Termodinámica irreversible de sistemas electroquímicos y complejos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100919/MX/Homogeneización y cálculo de propiedades efectivas de materiales compuestos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IN114818/MX/Fenómenos de transporte y propiedades termodinámicas en materia blanda/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IG100618/MX/Separación adsortiva de olefinas y parafinas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//LANCAD-UNAM-DGTIC-276/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Andrio Balado, A.; Hernández, SI.; García-Alcantara, C.; Del Castillo, LF.; Compañ Moreno, V.; Santamaría-Holek, I. (2019). Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Physical Chemistry Chemical Physics. 21(24):12948-12960. https://doi.org/10.1039/c8cp07472k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cp07472k es_ES
dc.description.upvformatpinicio 12948 es_ES
dc.description.upvformatpfin 12960 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 24 es_ES
dc.relation.pasarela S\402558 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Nafion® in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(5), 1498-1504. doi:10.1149/1.1836669 es_ES
dc.description.references Ishihara, T. (2002). Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics, 152-153, 609-613. doi:10.1016/s0167-2738(02)00394-6 es_ES
dc.description.references Singh, B., Kim, J.-H., Parkash, O., & Song, S.-J. (2016). Effect of MnO doping in tetravalent metal pyrophosphate (MP 2 O 7 ; M=Ce, Sn, Zr) electrolytes. Ceramics International, 42(2), 2983-2989. doi:10.1016/j.ceramint.2015.10.082 es_ES
dc.description.references Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A., & Uda, T. (2007). Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss., 134, 17-39. doi:10.1039/b604311a es_ES
dc.description.references Haile, S. M., Kreuer, K.-D., & Maier, J. (1995). Structure of Cs3(HSO4)2(H2PO4) – a new compound with a superprotonic phase transition. Acta Crystallographica Section B Structural Science, 51(5), 680-687. doi:10.1107/s0108768195005684 es_ES
dc.description.references Bagryantseva, I. N., & Ponomareva, V. G. (2012). Transport and structural properties of (1−x)CsHSO4–xKH2PO4 mixed compounds. Solid State Ionics, 225, 250-254. doi:10.1016/j.ssi.2012.02.032 es_ES
dc.description.references Baranov, A. I., Khiznichenko, V. P., Sandler, V. A., & Shuvalov, L. A. (1988). Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics, 81(1), 183-186. doi:10.1080/00150198808008840 es_ES
dc.description.references Baranov, A. (1989). Fast proton transport in crystals with a dynamically disordered hydrogen bond network. Solid State Ionics, 36(3-4), 279-282. doi:10.1016/0167-2738(89)90191-4 es_ES
dc.description.references Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4 es_ES
dc.description.references Ortiz, E., Vargas, R. ., & Mellander, B.-E. (1999). On the high-temperature phase transitions of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase? Solid State Ionics, 125(1-4), 177-185. doi:10.1016/s0167-2738(99)00173-3 es_ES
dc.description.references Ortiz, E., Vargas, R. A., & Mellander, B.-E. (1999). On the high-temperature phase transitions of CsH2PO4: A polymorphic transition? A transition to a superprotonic conducting phase? The Journal of Chemical Physics, 110(10), 4847-4853. doi:10.1063/1.478371 es_ES
dc.description.references Bronowska, W. (2001). Comment on «Does the structural superionic phase transition at 231 °C in CsH[sub 2]PO[sub 4] really not exist?» [J. Chem. Phys. 110, 4847 (1999)]. The Journal of Chemical Physics, 114(1), 611. doi:10.1063/1.1328043 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Jönsson, M., Welch, K., Hamp, S., & Strømme, M. (2006). Bacteria Counting with Impedance Spectroscopy in a Micro Probe Station. The Journal of Physical Chemistry B, 110(20), 10165-10169. doi:10.1021/jp060148q es_ES
dc.description.references Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4 es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Jonscher, A. K. (1977). The ‘universal’ dielectric response. Nature, 267(5613), 673-679. doi:10.1038/267673a0 es_ES
dc.description.references A. K. Jonscher , Dielectric Relaxation in Solids , Chelsea Dielectric Press Limited , London , 1983 es_ES
dc.description.references Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Mauritz, K. A. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromolecules, 22(12), 4483-4488. doi:10.1021/ma00202a018 es_ES
dc.description.references Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012 es_ES
dc.description.references Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308 es_ES
dc.description.references Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085 es_ES
dc.description.references Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f es_ES
dc.description.references Leys, J., Wübbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., … Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462 es_ES
dc.description.references Greenhoe, B. M., Hassan, M. K., Wiggins, J. S., & Mauritz, K. A. (2016). Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. Journal of Polymer Science Part B: Polymer Physics, 54(19), 1918-1923. doi:10.1002/polb.24121 es_ES
dc.description.references Haile, S. (1995). Superprotonic conductivity in Cs3(HSO4)2(H2PO4). Solid State Ionics, 77, 128-134. doi:10.1016/0167-2738(94)00291-y es_ES
dc.description.references Boysen, D. A., Haile, S. M., Liu, H., & Secco, R. A. (2004). Conductivity of Potassium and Rubidium Dihydrogen Phosphates at High Temperature and Pressure. Chemistry of Materials, 16(4), 693-697. doi:10.1021/cm034954a es_ES
dc.description.references Martsinkevich, V. V., Ponomareva, V. G., Drebushchak, T. N., Lavrova, G. V., & Shatskaya, S. S. (2010). Structure of Cs1 − x Rb x H2PO4 solid solutions. Inorganic Materials, 46(7), 765-769. doi:10.1134/s0020168510070149 es_ES
dc.description.references Louie, M. W., Kislitsyn, M., Bhattacharya, K., & Haile, S. M. (2010). Phase transformation and hysteresis behavior in Cs1−xRbxH2PO4. Solid State Ionics, 181(3-4), 173-179. doi:10.1016/j.ssi.2008.11.014 es_ES
dc.description.references Haile, S. M. (2007). Entropy Evaluation of the Superprotonic Phase of CsHSO4:  Pauling’s Ice Rules Adjusted for Systems Containing Disordered Hydrogen-Bonded Tetrahedra. Chemistry of Materials, 19(2), 270-279. doi:10.1021/cm062070w es_ES
dc.description.references Ponomareva, V. G., Bagryantseva, I. N., Lavrova, G. V., & Moroz, N. K. (2014). Investigation of Cs(H2PO4)1 − x (HSO4) x (x = 0.15–0.3) superprotonic phase stability. Inorganic Materials, 50(7), 716-722. doi:10.1134/s0020168514070127 es_ES
dc.description.references Ponomareva, V. G., & Bagryantseva, I. N. (2012). Superprotonic CsH2PO4-CsHSO4 solid solutions. Inorganic Materials, 48(2), 187-194. doi:10.1134/s0020168512010128 es_ES
dc.description.references Híjar, H., Méndez-Bermúdez, J. G., & Santamaría-Holek, I. (2010). Mesoscopic nonequilibrium thermodynamics approach to non-Debye dielectric relaxation. The Journal of Chemical Physics, 132(8), 084502. doi:10.1063/1.3314728 es_ES
dc.description.references Eyring, H. (1935). The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 3(2), 107-115. doi:10.1063/1.1749604 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Pasini Cabello, S. D., Mollá, S., Ochoa, N. A., Marchese, J., Giménez, E., & Compañ, V. (2014). New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. Journal of Power Sources, 265, 345-355. doi:10.1016/j.jpowsour.2014.04.093 es_ES
dc.description.references Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009 es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659 es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263b es_ES
dc.description.references Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095 es_ES
dc.description.references Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z es_ES
dc.description.references Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4 es_ES
dc.description.references Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j es_ES
dc.description.references García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018 es_ES
dc.description.references Lee, H.-S., & Tuckerman, M. E. (2008). The Structure and Proton Transport Mechanisms in the Superprotonic Phase of CsH2PO4: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C, 112(26), 9917-9930. doi:10.1021/jp800342y es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem