- -

Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4

Mostrar el registro completo del ítem

Andrio Balado, A.; Hernández, SI.; García-Alcantara, C.; Del Castillo, LF.; Compañ Moreno, V.; Santamaría-Holek, I. (2019). Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4. Physical Chemistry Chemical Physics. 21(24):12948-12960. https://doi.org/10.1039/c8cp07472k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140893

Ficheros en el ítem

Metadatos del ítem

Título: Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4
Autor: Andrio Balado, Andreu Hernández, S. I. García-Alcantara, C. Del Castillo, L. F. Compañ Moreno, Vicente Santamaría-Holek, Ivàn
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] We present an experimental study and a theoretical interpretation of the temperature dependence of the transport properties of doped CsH2PO4 salts in both protonic and superprotonic phases. Cesium phosphate based solid ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/c8cp07472k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8cp07472k
Código del Proyecto:
info:eu-repo/grantAgreement/UNAM//IN116617/ES/Termodinámica de no equilibrio de sistemas pequeños autoconfinados (continuación)/
...[+]
info:eu-repo/grantAgreement/UNAM//IN116617/ES/Termodinámica de no equilibrio de sistemas pequeños autoconfinados (continuación)/
info:eu-repo/grantAgreement/UNAM//IN117419/MX/Termodinámica irreversible de sistemas electroquímicos y complejos./
info:eu-repo/grantAgreement/UNAM/PAPIIT/IA100919/MX/Homogeneización y cálculo de propiedades efectivas de materiales compuestos/
info:eu-repo/grantAgreement/UNAM//IN114818/MX/Fenómenos de transporte y propiedades termodinámicas en materia blanda/
info:eu-repo/grantAgreement/UNAM//IG100618/MX/Separación adsortiva de olefinas y parafinas/
info:eu-repo/grantAgreement/UNAM//LANCAD-UNAM-DGTIC-276/
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
[-]
Agradecimientos:
This research was supported by Ministerio de Economia y Competitividad (MINECO) by means of the project reference: ENE/2015-69203-R. ISH, CGA and SIH are grateful to projects UNAM-DGAPA-PAPIIT-IN116617, IN117419 and IA104319. ...[+]
Tipo: Artículo

References

Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Nafion® in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(5), 1498-1504. doi:10.1149/1.1836669

Ishihara, T. (2002). Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics, 152-153, 609-613. doi:10.1016/s0167-2738(02)00394-6

Singh, B., Kim, J.-H., Parkash, O., & Song, S.-J. (2016). Effect of MnO doping in tetravalent metal pyrophosphate (MP 2 O 7 ; M=Ce, Sn, Zr) electrolytes. Ceramics International, 42(2), 2983-2989. doi:10.1016/j.ceramint.2015.10.082 [+]
Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Nafion® in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(5), 1498-1504. doi:10.1149/1.1836669

Ishihara, T. (2002). Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics, 152-153, 609-613. doi:10.1016/s0167-2738(02)00394-6

Singh, B., Kim, J.-H., Parkash, O., & Song, S.-J. (2016). Effect of MnO doping in tetravalent metal pyrophosphate (MP 2 O 7 ; M=Ce, Sn, Zr) electrolytes. Ceramics International, 42(2), 2983-2989. doi:10.1016/j.ceramint.2015.10.082

Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A., & Uda, T. (2007). Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss., 134, 17-39. doi:10.1039/b604311a

Haile, S. M., Kreuer, K.-D., & Maier, J. (1995). Structure of Cs3(HSO4)2(H2PO4) – a new compound with a superprotonic phase transition. Acta Crystallographica Section B Structural Science, 51(5), 680-687. doi:10.1107/s0108768195005684

Bagryantseva, I. N., & Ponomareva, V. G. (2012). Transport and structural properties of (1−x)CsHSO4–xKH2PO4 mixed compounds. Solid State Ionics, 225, 250-254. doi:10.1016/j.ssi.2012.02.032

Baranov, A. I., Khiznichenko, V. P., Sandler, V. A., & Shuvalov, L. A. (1988). Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics, 81(1), 183-186. doi:10.1080/00150198808008840

Baranov, A. (1989). Fast proton transport in crystals with a dynamically disordered hydrogen bond network. Solid State Ionics, 36(3-4), 279-282. doi:10.1016/0167-2738(89)90191-4

Otomo, J. (2003). Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3-4), 357-369. doi:10.1016/s0167-2738(02)00746-4

Ortiz, E., Vargas, R. ., & Mellander, B.-E. (1999). On the high-temperature phase transitions of some KDP-family compounds: a structural phase transition? A transition to a bulk-high proton conducting phase? Solid State Ionics, 125(1-4), 177-185. doi:10.1016/s0167-2738(99)00173-3

Ortiz, E., Vargas, R. A., & Mellander, B.-E. (1999). On the high-temperature phase transitions of CsH2PO4: A polymorphic transition? A transition to a superprotonic conducting phase? The Journal of Chemical Physics, 110(10), 4847-4853. doi:10.1063/1.478371

Bronowska, W. (2001). Comment on «Does the structural superionic phase transition at 231 °C in CsH[sub 2]PO[sub 4] really not exist?» [J. Chem. Phys. 110, 4847 (1999)]. The Journal of Chemical Physics, 114(1), 611. doi:10.1063/1.1328043

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

Jönsson, M., Welch, K., Hamp, S., & Strømme, M. (2006). Bacteria Counting with Impedance Spectroscopy in a Micro Probe Station. The Journal of Physical Chemistry B, 110(20), 10165-10169. doi:10.1021/jp060148q

Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235

Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947

Jonscher, A. K. (1977). The ‘universal’ dielectric response. Nature, 267(5613), 673-679. doi:10.1038/267673a0

A. K. Jonscher , Dielectric Relaxation in Solids , Chelsea Dielectric Press Limited , London , 1983

Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

Mauritz, K. A. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromolecules, 22(12), 4483-4488. doi:10.1021/ma00202a018

Munar, A., Andrio, A., Iserte, R., & Compañ, V. (2011). Ionic conductivity and diffusion coefficients of lithium salt polymer electrolytes measured with dielectric spectroscopy. Journal of Non-Crystalline Solids, 357(16-17), 3064-3069. doi:10.1016/j.jnoncrysol.2011.04.012

Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308

Wang, Y., Fan, F., Agapov, A. L., Saito, T., Yang, J., Yu, X., … Sokolov, A. P. (2014). Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076. doi:10.1016/j.polymer.2014.06.085

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Leys, J., Wübbenhorst, M., Preethy Menon, C., Rajesh, R., Thoen, J., Glorieux, C., … Longuemart, S. (2008). Temperature dependence of the electrical conductivity of imidazolium ionic liquids. The Journal of Chemical Physics, 128(6), 064509. doi:10.1063/1.2827462

Greenhoe, B. M., Hassan, M. K., Wiggins, J. S., & Mauritz, K. A. (2016). Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. Journal of Polymer Science Part B: Polymer Physics, 54(19), 1918-1923. doi:10.1002/polb.24121

Haile, S. (1995). Superprotonic conductivity in Cs3(HSO4)2(H2PO4). Solid State Ionics, 77, 128-134. doi:10.1016/0167-2738(94)00291-y

Boysen, D. A., Haile, S. M., Liu, H., & Secco, R. A. (2004). Conductivity of Potassium and Rubidium Dihydrogen Phosphates at High Temperature and Pressure. Chemistry of Materials, 16(4), 693-697. doi:10.1021/cm034954a

Martsinkevich, V. V., Ponomareva, V. G., Drebushchak, T. N., Lavrova, G. V., & Shatskaya, S. S. (2010). Structure of Cs1 − x Rb x H2PO4 solid solutions. Inorganic Materials, 46(7), 765-769. doi:10.1134/s0020168510070149

Louie, M. W., Kislitsyn, M., Bhattacharya, K., & Haile, S. M. (2010). Phase transformation and hysteresis behavior in Cs1−xRbxH2PO4. Solid State Ionics, 181(3-4), 173-179. doi:10.1016/j.ssi.2008.11.014

Haile, S. M. (2007). Entropy Evaluation of the Superprotonic Phase of CsHSO4:  Pauling’s Ice Rules Adjusted for Systems Containing Disordered Hydrogen-Bonded Tetrahedra. Chemistry of Materials, 19(2), 270-279. doi:10.1021/cm062070w

Ponomareva, V. G., Bagryantseva, I. N., Lavrova, G. V., & Moroz, N. K. (2014). Investigation of Cs(H2PO4)1 − x (HSO4) x (x = 0.15–0.3) superprotonic phase stability. Inorganic Materials, 50(7), 716-722. doi:10.1134/s0020168514070127

Ponomareva, V. G., & Bagryantseva, I. N. (2012). Superprotonic CsH2PO4-CsHSO4 solid solutions. Inorganic Materials, 48(2), 187-194. doi:10.1134/s0020168512010128

Híjar, H., Méndez-Bermúdez, J. G., & Santamaría-Holek, I. (2010). Mesoscopic nonequilibrium thermodynamics approach to non-Debye dielectric relaxation. The Journal of Chemical Physics, 132(8), 084502. doi:10.1063/1.3314728

Eyring, H. (1935). The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 3(2), 107-115. doi:10.1063/1.1749604

Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w

Pasini Cabello, S. D., Mollá, S., Ochoa, N. A., Marchese, J., Giménez, E., & Compañ, V. (2014). New bio-polymeric membranes composed of alginate-carrageenan to be applied as polymer electrolyte membranes for DMFC. Journal of Power Sources, 265, 345-355. doi:10.1016/j.jpowsour.2014.04.093

Altava, B., Compañ, V., Andrio, A., del Castillo, L. F., Mollá, S., Burguete, M. I., … Luis, S. V. (2015). Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 72, 69-81. doi:10.1016/j.polymer.2015.07.009

Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659

Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263b

Vega, J., Andrio, A., Lemus, A. A., del Castillo, L. F., & Compañ, V. (2017). Conductivity study of Zeolitic Imidazolate Frameworks, Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks, and mixed matrix membranes of Polyetherimide/Tetrabutylammonium hydroxide doped with Zeolitic Imidazolate Frameworks for proton conducting applications. Electrochimica Acta, 258, 153-166. doi:10.1016/j.electacta.2017.10.095

Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z

Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4

Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j

García-Bernabé, A., Rivera, A., Granados, A., Luis, S. V., & Compañ, V. (2016). Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochimica Acta, 213, 887-897. doi:10.1016/j.electacta.2016.08.018

Lee, H.-S., & Tuckerman, M. E. (2008). The Structure and Proton Transport Mechanisms in the Superprotonic Phase of CsH2PO4: An Ab Initio Molecular Dynamics Study. The Journal of Physical Chemistry C, 112(26), 9917-9930. doi:10.1021/jp800342y

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem